
z/OS

Security Server
Network Authentication Service
Programming

SC24-5927-02

IBM

z/OS

Security Server
Network Authentication Service
Programming

SC24-5927-02

IBM

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 249.

Third Edition, September 2002

This is a major revision of SC24-5927-01.

This edition applies to Version 1 Release 4 of z/OS (5694-A01), to Version 1, Release 4 of z/OS.e (5655-G52), and
to all subsequent releases of this product until otherwise indicated in new editions.

IBM® welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this document
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright Richard P. Basch 1995. All rights reserved.

© Copyright Gary S. Brown 1986.

© Copyright CyberSAFE Corporation 1994. All rights reserved.

© Copyright FundsXpress, INC. 1998. All rights reserved.

© Copyright Lehman Brothers, Inc. 1995, 1996. All rights reserved.

© Copyright Massachusetts Institute of Technology 1985, 1995. All rights reserved.

© Copyright Open Computing Security Group 1993. All rights reserved.

© Copyright The Regents of the University of California 1990, 1994. All rights reserved.

© Copyright RSA Data Security, Inc. 1990. All rights reserved.

© Copyright International Business Machines Corporation 2000, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Tables . xi

Figures . xiii

About this document . xv
Who should use this document . xv
How this document is organized . xv
Where to find more information . xv

Softcopy publications . xv
Internet sources . xv
Using LookAt to look up message explanations . xvi
Accessing licensed documents on the Internet. xvi

Conventions used in this document . xvii
Sending your comments . xviii

Summary of Changes . xix

Part 1. Kerberos interfaces . 1

Chapter 1. Introduction to Kerberos . 3
Kerberos basics . 3

The purpose of realms . 4
Assumptions about the environment . 4

Using Kerberos files . 4
Credentials cache . 5
Replay cache . 5
Key table . 5

Using Kerberos services . 6

Chapter 2. Kerberos programming interfaces . 7
krb5_address_compare. 7
krb5_address_search . 7
krb5_auth_con_free . 8
krb5_auth_con_genaddrs . 8
krb5_auth_con_getaddrs . 9
krb5_auth_con_getauthenticator . 10
krb5_auth_con_getflags . 11
krb5_auth_con_getivector . 11
krb5_auth_con_getkey . 12
krb5_auth_con_getlocalseqnumber . 13
krb5_auth_con_getlocalsubkey . 13
krb5_auth_con_getports . 14
krb5_auth_con_getrcache . 15
krb5_auth_con_getremoteseqnumber . 15
krb5_auth_con_getremotesubkey. 16
krb5_auth_con_init . 16
krb5_auth_con_initivector . 17
krb5_auth_con_set_req_cksumtype . 18
krb5_auth_con_set_safe_cksumtype . 19
krb5_auth_con_setaddrs . 19
krb5_auth_con_setflags . 20
krb5_auth_con_setivector . 21
krb5_auth_con_setports . 21

© Copyright IBM Corp. 2000, 2002 iii

||

||

krb5_auth_con_setrcache . 22
krb5_auth_con_setuseruserkey . 23
krb5_auth_to_rep . 23
krb5_build_principal . 24
krb5_build_principal_ext . 25
krb5_build_principal_ext_va. 26
krb5_build_principal_va . 27
krb5_c_block_size . 28
krb5_c_checksum_length . 28
krb5_c_decrypt . 29
krb5_c_encrypt . 30
krb5_c_encrypt_length . 31
krb5_c_enctype_compare . 32
krb5_c_keyed_checksum_types . 32
krb5_c_make_checksum . 33
krb5_c_make_random_key . 34
krb5_c_random_make_octets . 35
krb5_c_random_seed . 35
krb5_c_string_to_key . 36
krb5_c_verify_checksum . 36
krb5_cc_close. 37
krb5_cc_default . 38
krb5_cc_default_name . 38
krb5_cc_destroy . 39
krb5_cc_end_seq_get . 40
krb5_cc_generate_new . 40
krb5_cc_get_name . 41
krb5_cc_get_principal . 41
krb5_cc_get_type . 42
krb5_cc_initialize. 42
krb5_cc_next_cred . 43
krb5_cc_register . 44
krb5_cc_remove_cred . 44
krb5_cc_resolve . 46
krb5_cc_retrieve_cred . 46
krb5_cc_set_default_name . 48
krb5_cc_set_flags . 48
krb5_cc_start_seq_get . 49
krb5_cc_store_cred. 50
krb5_change_password . 50
krb5_copy_address . 51
krb5_copy_addresses . 52
krb5_copy_authdata . 52
krb5_copy_authenticator . 53
krb5_copy_checksum . 54
krb5_copy_creds. 54
krb5_copy_data . 55
krb5_copy_keyblock . 56
krb5_copy_keyblock_contents . 56
krb5_copy_principal . 57
krb5_copy_ticket . 57
krb5_dll_load . 58
krb5_dll_unload . 59
krb5_free_address . 59
krb5_free_addresses . 60
krb5_free_ap_rep_enc_part . 60

iv V1R4.0 Network Authentication Service Programming

krb5_free_authdata . 61
krb5_free_authenticator . 61
krb5_free_authenticator_contents . 62
krb5_free_checksum . 62
krb5_free_checksum_contents. 63
krb5_free_cksumtypes . 63
krb5_free_context . 64
krb5_free_cred_contents . 64
krb5_free_creds . 65
krb5_free_data . 65
krb5_free_data_contents . 66
krb5_free_enc_tkt_part . 66
krb5_free_enctypes. 67
krb5_free_error . 67
krb5_free_host_realm . 68
krb5_free_kdc_rep . 68
krb5_free_keyblock . 69
krb5_free_keyblock_contents . 69
krb5_free_krbhst . 70
krb5_free_principal . 70
krb5_free_string . 71
krb5_free_tgt_creds . 71
krb5_free_ticket . 71
krb5_free_tickets. 72
krb5_gen_replay_name . 72
krb5_generate_seq_number . 73
krb5_generate_subkey . 74
krb5_get_cred_from_kdc . 74
krb5_get_cred_from_kdc_renew . 75
krb5_get_cred_from_kdc_validate . 76
krb5_get_cred_via_tkt . 77
krb5_get_credentials . 78
krb5_get_credentials_renew . 79
krb5_get_credentials_validate . 80
krb5_get_default_in_tkt_ktypes . 81
krb5_get_default_realm . 82
krb5_get_default_tgs_ktypes . 82
krb5_get_host_realm . 83
krb5_get_in_tkt_system . 84
krb5_get_in_tkt_with_keytab . 85
krb5_get_in_tkt_with_password . 87
krb5_get_in_tkt_with_skey . 89
krb5_get_krbhst . 91
krb5_get_server_rcache . 92
krb5_init_context. 92
krb5_kt_add_entry . 93
krb5_kt_close . 93
krb5_kt_default . 94
krb5_kt_default_name . 95
krb5_kt_end_seq_get . 95
krb5_kt_free_entry . 96
krb5_kt_get_entry . 96
krb5_kt_get_name . 97
krb5_kt_get_type . 98
krb5_kt_next_entry . 98
krb5_kt_read_service_key . 99

Contents v

krb5_kt_register . 100
krb5_kt_remove_entry . 100
krb5_kt_resolve. 101
krb5_kt_start_seq_get . 102
krb5_md4_crypto_compat_ctl . 102
krb5_md5_crypto_compat_ctl . 103
krb5_mk_error . 104
krb5_mk_priv . 104
krb5_mk_rep. 105
krb5_mk_req. 106
krb5_mk_req_extended . 107
krb5_mk_safe . 108
krb5_os_hostaddr . 110
krb5_os_localaddr . 110
krb5_parse_name . 111
krb5_principal_compare . 111
krb5_random_confounder . 112
krb5_rc_close . 113
krb5_rc_default . 113
krb5_rc_default_name . 114
krb5_rc_destroy. 114
krb5_rc_expunge . 115
krb5_rc_free_entry_contents . 115
krb5_rc_get_lifespan . 116
krb5_rc_get_name. 116
krb5_rc_get_type . 117
krb5_rc_initialize . 117
krb5_rc_recover . 118
krb5_rc_register_type . 118
krb5_rc_resolve. 119
krb5_rc_store . 120
krb5_rd_error . 120
krb5_rd_priv . 121
krb5_rd_rep . 122
krb5_rd_req . 123
krb5_rd_req_verify . 125
krb5_rd_safe. 126
krb5_read_password . 127
krb5_realm_compare. 128
krb5_recvauth . 129
krb5_sendauth . 130
krb5_set_config_files. 132
krb5_set_default_in_tkt_ktypes . 133
krb5_set_default_realm . 134
krb5_set_default_tgs_ktypes . 134
krb5_sname_to_principal . 135
krb5_svc_get_msg . 136
krb5_timeofday . 136
krb5_unparse_name . 137
krb5_unparse_name_ext . 138
krb5_us_timeofday . 138

Chapter 3. Kerberos administration programming interfaces 141
kadm5_chpass_principal . 141
kadm5_chpass_principal_3 . 142
kadm5_create_policy. 143

vi V1R4.0 Network Authentication Service Programming

||
||

||

kadm5_create_principal. 144
kadm5_create_principal_3 . 145
kadm5_delete_policy. 147
kadm5_delete_principal . 148
kadm5_destroy . 148
kadm5_free_key_list . 149
kadm5_free_name_list . 150
kadm5_free_policy_ent . 150
kadm5_free_principal_ent . 151
kadm5_get_policies . 151
kadm5_get_policy . 152
kadm5_get_principal . 153
kadm5_get_principals . 155
kadm5_get_privs . 156
kadm5_init_with_creds . 157
kadm5_init_with_password . 159
kadm5_init_with_skey . 161
kadm5_modify_policy . 163
kadm5_modify_principal . 164
kadm5_randkey_principal . 165
kadm5_randkey_principal_3 . 166
kadm5_rename_principal . 167
kadm5_setkey_principal . 168
kadm5_setkey_principal_3. 169

Part 2. GSS-API interfaces . 173

Chapter 4. Introduction to GSS-API . 175
General information about GSS-API . 175
GSS-API services . 176

Message integrity and confidentiality . 176
Message replay and sequencing . 176
Quality of protection . 177
Anonymity. 177

Error handling . 178
Major status values . 178
Minor status values . 180

Data types . 180
Integer . 180
String . 180
Object identifier . 180
Object identifier sets . 181
Credentials . 181
Contexts . 181
Tokens . 182
Names . 182
Channel bindings . 182
Optional parameters . 183

GSS-API version compatibility . 184
Interoperability with Microsoft Windows 2000 SSPI. 184

Creating the security context . 184
Accepting the security context . 184
Message signature . 184
Message encryption . 185
Message sequence numbers . 185

Contents vii

||

||

||

||

Chapter 5. GSS-API programming interfaces . 187
gss_accept_sec_context . 187
gss_acquire_cred . 190
gss_add_cred . 192
gss_add_oid_set_member . 194
gss_canonicalize_name. 195
gss_compare_name . 196
gss_context_time . 197
gss_create_empty_oid_set . 198
gss_delete_sec_context . 199
gss_display_name. 200
gss_display_status . 201
gss_duplicate_name . 202
gss_export_cred . 203
gss_export_name . 204
gss_export_sec_context . 205
gss_get_mic . 206
gss_import_cred . 208
gss_import_name . 208
gss_import_sec_context . 210
gss_indicate_mechs . 211
gss_init_sec_context . 212
gss_inquire_context . 216
gss_inquire_cred . 217
gss_inquire_cred_by_mech . 219
gss_inquire_mechs_for_name . 220
gss_inquire_names_for_mech . 221
gss_oid_to_str . 222
gss_process_context_token . 223
gss_release_buffer . 224
gss_release_cred . 224
gss_release_name . 225
gss_release_oid . 226
gss_release_oid_set . 227
gss_str_to_oid . 227
gss_test_oid_set_member . 228
gss_unwrap . 229
gss_wrap . 232
gss_wrap_size_limit . 234

Chapter 6. GSS-API programming interfaces - Kerberos mechanism 237
gss_krb5_acquire_cred_ccache . 237
gss_krb5_ccache_name . 239
gss_krb5_copy_ccache . 240
gss_krb5_get_ccache . 241
gss_krb5_get_tkt_flags . 242

Appendix A. POSIX-based portable character set 243

Appendix B. Accessibility . 247
Using assistive technologies . 247
Keyboard navigation of the user interface . 247

Notices . 249
Clearly Differentiated Programming Interfaces (CDPI). 253
Trademarks . 253

viii V1R4.0 Network Authentication Service Programming

Bibliography . 255
z/OS documents for Network Authentication Service 255
Other Security Server publications . 255

Lightweight Directory Access Protocol (LDAP) . 255
Resource Access Control Facility (RACF®). 255

MVS programming documents . 255
Other documents . 255

Index . 257

Contents ix

x V1R4.0 Network Authentication Service Programming

Tables

1. Typographic conventions. xvii
2. Common errors returned by the kadm5_chpass_principal() routine 141
3. Common errors returned by the kadm5_chpass_principal_3() routine 143
4. Common errors returned by the kadm5_create_policy() routine 144
5. Common errors returned by the kadm5_create_principal() routine 145
6. Common errors returned by the kadm5_create_principal() routine 146
7. Common errors returned by the kadm5_delete_policy() routine 147
8. Common errors returned by the kadm5_delete_principal() routine 148
9. Common errors returned by the kadm5_destroy() routine 149

10. Common errors returned by the kadm5_get_policies() routine 152
11. Common errors returned by the kadm5_get_policy() routine 153
12. Flags for mask parameter for kadm5_get_principal() 154
13. Common errors returned by the kadm5_get_principal() routine 154
14. Common errors returned by the kadm5_get_principals() routine 156
15. Common errors returned by the kadm5_get_principals() routine 157
16. Mask values for config_params parameter for kadm5_init_with_creds() 157
17. Common errors returned by the kadm5_init_with_creds() routine 159
18. Mask values for config_params parameter for kadm5_init_with_password() 159
19. Common errors returned by the kadm5_init_with_password() routine 161
20. Mask values for config_params parameter for kadm5_init_with_skey() 161
21. Common errors returned by the kadm5_init_with_skey() routine 163
22. Common errors returned by the kadm5_modify_policy() routine 163
23. Flags for mask parameter for kadm5_modify_principal() 164
24. Common errors returned by the kadm5_modify_principal() routine 165
25. Common errors returned by the kadm5_randkey_principal() routine 166
26. Common errors returned by the kadm5_randkey_principal() routine 167
27. Common errors returned by the kadm5_rename_principal() routine 168
28. Common errors returned by the kadm5_setkey_principal() routine 169
29. Common errors returned by the kadm5_setkey_principal() routine 170
30. GSS-API calling errors . 178
31. GSS-API routine errors . 178
32. GSS-API supplementary status bits . 179
33. Channel bindings address types. 182
34. GSS-API optional parameters. 184
35. Status Codes for gss_accept_sec_context() . 190
36. Status Codes for gss_acquire_cred() . 192
37. Status Codes for gss_add_cred() . 194
38. Status Codes for gss_add_oid_set_member() 195
39. Status Codes for gss_canonicalize_name() . 196
40. Status Codes for gss_compare_name() . 197
41. Status Codes for gss_context_time() . 198
42. Status Codes for gss_create_empty_oid_set() 198
43. Status Codes for gss_delete_sec_context() . 199
44. Status Codes for gss_display_name() . 200
45. Status Codes for gss_display_status() . 202
46. Status Codes for gss_duplicate_name() . 203
47. Status Codes for gss_export_cred() . 204
48. Status Codes for gss_export_name() . 205
49. Status Codes for gss_export_sec_context() . 206
50. Status Codes for gss_get_mic() . 207
51. Status Codes for gss_import_cred() . 208
52. Status Codes for gss_import_name() . 210
53. Status Codes for gss_import_sec_context() . 211

© Copyright IBM Corp. 2000, 2002 xi

||

||

||

||

||

54. Status Codes for gss_indicate_mechs() . 212
55. Status Codes for gss_init_sec_context() . 215
56. Status Codes for gss_inquire_context() . 217
57. Status Codes for gss_inquire_cred() . 218
58. Status Codes for gss_inquire_cred_by_mech() 220
59. Status Codes for gss_inquire_mechs_for_name() 221
60. Status Codes for gss_inquire_names_for_mech() 222
61. Status Codes for gss_oid_to_str() . 223
62. Status Codes for gss_process_context_token() 223
63. Status Codes for gss_release_buffer() . 224
64. Status Codes for gss_release_cred() . 225
65. Status Codes for gss_release_name() . 226
66. Status Codes for gss_release_oid() . 227
67. Status Codes for gss_release_oid_set() . 227
68. Status Codes for gss_str_to_oid() . 228
69. Status Codes for gss_test_oid_set_member() 229
70. Status Codes for gss_unwrap() . 230
71. Status Codes for gss_verify_mic() . 231
72. Status Codes for gss_wrap() . 233
73. Status Codes for gss_wrap_size_limit() . 235
74. Status Codes for gss_krb5_acquire_cred_ccache() 239
75. Status Codes for gss_krb5_ccache_name() . 240
76. Status Codes for gss_krb5_copy_ccache() . 241
77. Status Codes for gss_krb5_get_ccache() . 242
78. Status Codes for gss_krb5_get_tkt_flags() . 242
79. POSIX-based portable character set . 243

xii V1R4.0 Network Authentication Service Programming

Figures

1. GSS status code bit locations. 178

© Copyright IBM Corp. 2000, 2002 xiii

xiv V1R4.0 Network Authentication Service Programming

About this document

This publication describes application programming interfaces (APIs) for z/OS™ Security Server Network
Authentication Service. It supports both z/OS (5694-A01) and z/OS.e (5655-G52).

Who should use this document
This document is for application programmers who wish to create interfaces to z/OS Security Server
Network Authentication Service.

How this document is organized
This document is divided into two parts. Part 1 deals with the Kerberos programming interfaces and Part 2
handles GSS-API interfaces. Within Part 1, there is a chapter introducing the use of Kerberos interfaces
and two chapters containing the actual interfaces. Part 2 contains an introductory chapter on using
GSS-API interfaces, and two chapters of interfaces.

The document also contains a bibliography and an appendix listing the POSIX-based character set. For a
glossary of terms for Network Authentication Service, see z/OS: Security Server Network Authentication
Service Administration.

Where to find more information

Where necessary, this document refers to information in other documents. For complete titles and order
numbers for all elements of z/OS, see z/OS: Information Roadmap, SA22-7500.

The companion publication for this document is z/OS: Security Server Network Authentication Service
Administration, which provides planning, configuration, and administration information for the product. The
“Bibliography” on page 255 lists selected publications of z/OS Security Server.

Softcopy publications
The z/OS Security Server Network Authentication Service library is available on a CD-ROM, z/OS
Collection, SK3T-4269. The CD-ROM online library collection is a set of unlicensed documents for z/OS
and related products that includes the IBM Library Reader™. This is a program that enables you to view
the BookManager® files. This CD-ROM also contains the Portable Document Format (PDF) files. You can
view or print these files with the Adobe Acrobat Reader.

Internet sources
z/OS online library

The softcopy z/OS publications are also available for web browsing, and PDF versions for viewing
or printing using the following URL:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

You can also provide comments about this document and any other z/OS documentation by
visiting that URL. Your feedback is important in helping to provide the most accurate and
high-quality information.

© Copyright IBM Corp. 2000, 2002 xv

|
|

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for most of the z/OS, z/VM, and VSE
messages you encounter, as well as system abends, and some codes. Using LookAt to find information is
faster than a conventional search, because, in most cases, LookAt goes directly to the message
explanation.

You can use LookAt from the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

or from anywhere in z/OS where you can access a TSO/E command line (for example, TSO/E prompt,
ISPF, z/OS UNIX Systems Services running OMVS).

You can also download code from the z/OS Collection, SK3T-4269, or from the LookAt Web site so you
can access LookAt from a PalmPilot (Palm VIIx suggested).

To use LookAt on the Internet to find a message explanation, go to the LookAt Web site and simply enter
the message identifier (for example, $HASP701 or $HASP*). You can select a specific release to narrow
your search.

To use LookAt as a TSO/E command, you must have LookAt installed on your host system. You can
obtain the LookAt code for TSO/E from a disk on your z/OS Collection, SK3T-4269, or from the LookAt
Web site. To obtain the code from the LookAt Web site, do the following:

1. Go to http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html.

2. Click News .

3. Scroll to Download LookAt Code for TSO/E and z/VM .

4. Click the ftp link, which takes you to a list of operating systems. Click the appropriate operating
system. Then click the appropriate release.

5. Open the lookat.me file and follow its detailed instructions.

After you have LookAt installed, you can access a message explanation from a TSO/E command line by
entering: lookat message-id. LookAt displays the message explanation for the message requested.To find
a message explanation from a TSO command line, simply enter: lookat message-id. LookAt displays the
message explanation for the message requested.

Note: Some messages have information in more than one document. For example, IEC192I has routing
and descriptor codes listed in z/OS MVS System Messages, Vol 7 (IEB-IEE) and z/OS: MVS
Routing and Descriptor Codes. For such messages, LookAt displays a list of documents in which
the message appears. You can then click the message identifier under each document title to view
information about the message.

Accessing licensed documents on the Internet
z/OS licensed documentation is available on the Internet in BookManager and PDF format at the IBM
Resource Link™ Web site at:
http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to these documents
requires an IBM Resource Link user ID, and password, and akey code. With your z/OS order you received
a Memo to Licensees, GI10-0671, that includes this key code.

To obtain your IBM Resource Link user ID and password, log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

xvi V1R4.0 Network Authentication Service Programming

|
|
|
|

|

|

|
|

|
|

|
|
|

|
|
|

|

|

|

|
|

|

|
|
|
|

|
|
|
|
|

|

|
|

|

|
|
|

|

|

|

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

1. Sign in to Resource Link using your Resource Link user ID and password

2. Select User Profiles located on the left-hand navigation bar

3. Click Request Access to z/OS Licensed Books

4. Supply the key code where requested and click Submit .

If you supplied the correct key code, you will receive confirmation that your request is being processed.
After your request is processed, you will receive an e-mail confirmation.

Note: You cannot access the z/OS licensed documents unless you have registered for access to them
and received an e-mail confirmation informing you that your request has been processed.

To access the licensed documents:

1. Sig in to Resource Link using your Resource Link user ID and password

2. Select Library located on the left-hand navigation bar.

3. Click zSeries .

4. Click Software .

5. Click the release of z/OS.

6. Click Licensed publications .

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or IBM Resource Link to
print licensed documents.

Conventions used in this document
This document uses the following typographic conventions:

Table 1. Typographic conventions

Boldface Indicates the name of:

v The item you need to select

v A field, option, parameter, or command

v A new term

Italic Indicates document titles or variable information that must be replaced by an actual value.

Monofont Indicates:

v Names of directories, files, and user IDs

v Information displayed by the system

v An example

v A portion of a file or sample code

v A previously entered value.

Bold Monofont Indicates information that you type into the system exactly as it appears in this document.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list of required items, in format and syntax descriptions, from which you
must select one.

| A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the keyboard.

. . . Horizontal ellipsis points indicate that you can repeat the preceding item one or more times.

About this document xvii

|

|

|

|

|
|

|
|

|

|

|

|

|

|

|

|

|
|

Table 1. Typographic conventions (continued)

\ A backslash is used as a continuation character when entering commands from the shell that
exceed one line (255 characters). If the command exceeds one line, use the backslash
character as the last nonblank character on the line to be continued, and continue the
command on the next line.

Sending your comments
Your feedback is important in helping to provide the most accurate and high-quality information. If you
have any comments about this document, send your comments by using Resource Link at
http://www.ibm.com/servers/resourcelink. Select Feedback on the Navigation bar on the left. Besure to
include the name of the document, the form number of the document, the version of the document, if
applicable, and the specific location of the text you are commenting on (for example, a page number or
table number).

xviii V1R4.0 Network Authentication Service Programming

|

|
|
|
|
|
|

http://www.ibm.com/servers/resourcelink

Summary of Changes

Summary of changes
for SC24-5927-02
z/OS Version 1 Release 4

The document contains information previously presented in SC24-5927-01, which supports z/OS Version 1
Release 2.

New information These items are new for this release:

v Information has been added to indicate that this document supports z/OS.e.

v An appendix with z/OS product accessibility information has been added.

This document contains terminology, maintenance, and editorial changes. Technical changes or additions
to the text and illustrations are indicated by a vertical line to the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of some content in this
document--for example, headings that use uppercase for the first letter of initial words only, and
procedures that have a different look and format. The changes are ongoing improvements to the
consistency and retrievability of information in our documents.

Summary of changes
for SC24-5927-01
z/OS Version 1 Release 2

The document contains information previously presented in SC24-5927-00, which supports z/OS Version 1
Release 1.

New information

v A whole new group of application programming interfaces (APIs), the Kerberos Administration APIs.

v Additions to the other groups of APIs.

v Modifications to existing APIs, such as new parameters.

Changed information

v Support for a new type of credentials cache, XMEM, in addition to File and MEMORY credentials
caches.

This document contains terminology, maintenance, and editorial changes, including changes to improve
consistency and retrievability.

© Copyright IBM Corp. 2000, 2002 xix

xx V1R4.0 Network Authentication Service Programming

Part 1. Kerberos interfaces

This Part introduces the Kerberos application programming interfaces (APIs) and describes each one.
These topics are covered:

v Introduction to Kerberos

– Kerberos basics

– Using Kerberos files

– Using Kerberos services

v Kerberos programming interfaces

v Kerberos administration programming interfaces

© Copyright IBM Corp. 2000, 2002 1

2 V1R4.0 Network Authentication Service Programming

Chapter 1. Introduction to Kerberos

Security Server Network Authentication Service for z/OS is based on Kerberos Version 5. This chapter
describes the routines that make up the Kerberos Version 5 application programming interface. The
description is oriented towards programmers who already have a basic familiarity with Kerberos and are in
the process of including Kerberos authentication as part of applications being developed.

Refer to the following Internet Request for Comment (RFC) documents for information on Kerberos and
GSS-API:
v RFC 1510 - The Kerberos Network Authentication Service (V5)
v RFC 1964 - The Kerberos Version 5 GSS-API Mechanism
v RFC 2078 - Generic Security Service Application Program Interface (V2)
v RFC 2744 - Generic Security Service Application Program Interface Version 2: C Bindings

There is a glossary of terms for Network Authentication Service in z/OS: Security Server Network
Authentication Service Administration.

Kerberos basics
Kerberos performs authentication as a trusted third-party authentication service by using conventional
shared secret key cryptography. Kerberos provides a means of verifying the identities of principals, without
relying on authentication by the host operating system, without basing trust on host addresses, without
requiring physical security of all the hosts on the network, and under the assumption that packets traveling
along the network can be read, modified, and inserted at will.

The two methods for obtaining credentials, the initial-ticket exchange and the ticket-granting-ticket
exchange, use slightly different protocols and require different Application Programming Interface (API)
routines.

The basic difference an application programmer sees is that the initial-ticket exchange does not require a
ticket-granting-ticket (TGT) but does require the client’s secret key. Usually, the initial-ticket exchange is for
a TGT, and TGT exchanges are used from then on. In a TGT exchange, the TGT is sent as part of the
request for a ticket and the reply is encrypted in the session key obtained from the TGT. Thus, once a
user’s password is used to obtain the initial TGT, it is not required for subsequent TGT exchanges to
obtain additional tickets.

A ticket-granting ticket contains the Kerberos server (krbtgt/realm) as the server name. A service ticket
contains the application server as the server name. A ticket-granting ticket is used to obtain service tickets.
In order to obtain a service ticket for a server in another realm, the application must first obtain a
ticket-granting ticket to the Kerberos server for that realm.

The Kerberos server reply consists of a ticket and a session key, encrypted either in the user’s secret key
or the TGT session key. The combination of a ticket and a session key is known as a set of credentials.
An application client can use these credentials to authenticate to the application server by sending the
ticket and an authenticator to the server. The authenticator is encrypted in the session key of the ticket
and contains the name of the client, the name of the server, and the time the authenticator was created.

In order to verify the authentication, the application server decrypts the ticket using its service key, which is
known only by the application server and the Kerberos server. Inside the ticket, the Kerberos server has
placed the name of the client, the name of the server, a session key associated with the ticket, and some
additional information.

The application server then uses the ticket session key to decrypt the authenticator and verifies that the
information in the authenticator matches the information in the ticket. The server also verifies that the
authenticator timestamp is recent to prevent replay attacks (the default is 5 minutes). Since the session

© Copyright IBM Corp. 2000, 2002 3

key was generated randomly by the Kerberos server and delivered encrypted in the service key and a key
known only by the user, the application server can be confident that users really are who they claim to be,
by virtue of the fact that the user was able to encrypt the authenticator in the correct key.

To provide detection of both replay attacks and message stream modification attacks, the integrity of all
the messages exchanged between principals can also be guaranteed by generating and transmitting a
collision-proof checksum of the client’s message, keyed with the session key. Privacy and integrity of the
message exchanged between principals can be secured by encrypting the data to be passed using the
session key.

The purpose of realms
The Kerberos protocol is designed to operate across organizational boundaries. Each organization wishing
to run a Kerberos server establishes its own realm. The name of the realm in which a client is registered is
part of the client’s name and can be used by the application server to decide whether to honor a request.

By establishing inter-realm keys, the administrators of two realms can allow a client authenticated in one
realm to use its credentials in the other realm. The exchange of inter-realm keys registers the
ticket-granting service of each realm as a principal in the other realm. A client is then able to obtain a
ticket-granting ticket for the remote realm’s ticket-granting service from its local ticket-granting service.
Tickets issued to a service in the remote realm indicate that the client was authenticated from another
realm.

This method can be repeated to authenticate throughout an organization across multiple realms. To build a
valid authentication path to a distant realm, the local realm must share an inter-realm key with the target
realm or with an intermediate realm that communicates with either the target realm or with another
intermediate realm.

Realms are typically organized hierarchically. Each realm shares a key with its parent and a different key
with each child. If an inter-realm key is not directly shared by two realms, the hierarchical organization
allows an authentication path to be easily constructed. If a hierarchical organization is not used, it may be
necessary to consult some database in order to construct an authentication path between realms.

Although realms are typically hierarchical, intermediate realms may be bypassed to achieve cross-realm
authentication through alternate authentication paths. It is important for the end-service to know which
realms were transited when deciding how much faith to place in the authentication process. To facilitate
this decision, a field in each ticket contains the names of the realms that were involved in authenticating
the client.

Assumptions about the environment
Kerberos has certain limitations that should be kept in mind when designing security measures:

v Kerberos does not address “denial of service” attacks. There are places in these protocols where an
intruder can prevent an application from participating in the proper authentication steps. Detection and
solution of such attacks (some of which can appear to be “usual” failure modes for the system) is
usually best left to human administrators and users.

v Principals must keep their secret keys secret. If an intruder steals a principal’s key, it can then
masquerade as that principal or impersonate any server to the legitimate principal.

v “Password guessing” attacks are not solved by using Kerberos. If a user chooses a poor password, it is
possible for an attacker to successfully mount an offline dictionary attack by repeatedly attempting to
decrypt messages that are encrypted under a key derived from the user’s password.

Using Kerberos files
The Kerberos runtime uses three types of files during its processing: credentials cache, replay cache, and
key table. Each type of file has a set of API routines to manage and manipulate the file.

Introduction

4 V1R4.0 Network Authentication Service Programming

Credentials cache
The credentials cache holds Kerberos credentials (tickets, session keys, and other identifying information)
in a semi-permanent store. The Kerberos runtime reads credentials from the cache as they are needed
and stores new credentials in the cache as they are obtained. This way, the application does not have to
manage the credentials itself.

Kerberos supports three types of credentials caches: FILE, MEMORY, and XMEM. The default credentials
cache type is FILE.

v A FILE credentials cache is maintained in an HFS file and can be shared between applications. The
credentials cache files are located in /var/skrb/creds . This directory can be shared by multiple systems
in the sysplex (Kerberos uses global resource serialization to serialize access to the credentials cache
file). A unique filename is generated each time a new credentials cache file is created. These
credentials cache files persist until they are deleted (the kinit command deletes the current default
credentials cache file for a user when it creates a new default credentials cache). The kdestroy
command with the -e option can be used to remove expired credentials cache files.

v A MEMORY credentials cache is maintained in storage and can be accessed only by the application
that created it. The credentials cache does not persist when the application terminates.

v An XMEM credentials cache is maintained in a data space by the Kerberos security server. The
credentials cache can be read from any system in the sysplex but can be updated only from the system
that created the credentials cache. The credentials cache does not persist when the Kerberos security
server terminates. The Kerberos security server periodically deletes credentials caches that contain only
expired credentials. The MODIFY SKRBKDC,DISPLAY CREDS command can be used to display the
current contents of the credentials data space.

Replay cache
The replay cache is used to detect duplicate requests. Each time a request is processed by the Kerberos
runtime, an entry is made in the replay cache. If a later request is processed that matches an entry
already in the replay cache, an error is returned to the application program. The replay cache is
periodically purged to remove stale entries (a stale entry occurs when the lifetime of the associated
request has expired).

Kerberos supports two types of replay caches: dfl and mem . The dfl replay cache is maintained in a file
and persists across application restarts. The mem replay cache is maintained in memory and does not
exist after the application has ended. The replay cache should not be shared between applications since
this could result in false replay errors caused by different requests with the same timestamp.

Key table
The key table is used to store encryption keys. This is generally used by server applications to provide the
encryption keys for use by the Kerberos runtime when it needs to decrypt a request received from a client
application. Each key has an associated version number, and the version is incremented each time the
key is changed. When a service ticket is encrypted by the key distribution center (KDC), it uses the latest
encryption key stored in the Kerberos database and records the key version number in the ticket. Then,
when the ticket is presented to the server, the key version number is used to retrieve the proper key from
the key table. This allows the server to change its key without invalidating existing tickets.

Kerberos supports two types of key tables: FILE and WRFILE. Both of these key table types refer to the
same file-based key table. The difference is that a key table opened as FILE is read-only while a key table
opened as WRFILE can be read and written. The key table can be shared by multiple applications.

Introduction

Chapter 1. Introduction to Kerberos 5

Using Kerberos services
The krb5_context opaque data type represents the current Kerberos context. Each application must have
at least one Kerberos context. The Kerberos context contains configuration data obtained from the
Kerberos configuration file, as well as override values that have been set by the application. A single
Kerberos context may be shared by multiple threads in the same process but may not be shared between
processes. The krb5_init_context() API routine is used to create a Kerberos context.

The krb5_auth_context opaque data type represents a Kerberos authentication context. The Kerberos
authentication context is used by message service routines. Each client-server connection must have its
own authentication context because sequence numbers, encryption keys, check sums, and authenticators
are stored in the context. If an authentication context is shared between threads, the application must
provide concurrency control so that the context is not accessed by more than one thread at a time. The
krb5_auth_con_init() API routine is used to create a Kerberos authentication context.

In order to properly handle code pages, the setlocale() routine must be called before any Kerberos API
routines are called. This insures that the proper code page is set. Kerberos does not support double-byte
or bi-directional character sets. In addition, it is strongly recommended that principal and realm names
consist of characters from the POSIX character set. See Appendix A, “POSIX-based portable character
set” on page 243 for a table showing the POSIX character set.

The Kerberos API does not establish its own signal handlers since this could conflict with the application’s
use of signals (signal handlers have a process-wide scope). Consequently, the application should set up
its own signal handler for the SIGPIPE signal. The action routine can be SIG_IGN unless the application
needs to perform its own processing for a broken pipe.

In order to compile, link, and run a Kerberos application, you must:

v Define the S390 compiler variable (-D S390) when compiling your application

v Specify the DLL option to the compiler (-Wc,DLL)

v Specify the DLL option to the binder (-Wl,DLL)

v Link with the libskrb.a library and include the EUVFKDLL.x side file.

v Ensure that the EUVFKDLL load module is in the load module search list.

v Ensure that the LE 1.9 or later runtime is available.

v Ensure that POSIX(ON) is specified as an LE runtime option.

If you are compiling with Job Control Language (JCL) and choose to use the header, export, and library
datasets (the EUVF.SEUVFHDR, EUVF.SEUVFEXP, and EUVF.SEUVFLIB datasets), contact your system
administrator to ensure that you have READ access to these datasets.

Introduction

6 V1R4.0 Network Authentication Service Programming

Chapter 2. Kerberos programming interfaces

This chapter presents the Kerberos programming interfaces in alphabetical order. It provides the purpose,
format, parameters, and use of each.

krb5_address_compare

Purpose
Compares two Kerberos addresses.

Format
#include <skrb/krb5.h>
krb5_boolean krb5_address_compare (

krb5_context context,
const krb5_address * addr1,
const krb5_address * addr2)

Parameters

Input
context

Specifies the Kerberos context.

addr1
Specifies the first address.

addr2
Specifies the second address.

Usage
The krb5_address_compare() routine compares two Kerberos addresses and returns TRUE if they are
the same and FALSE otherwise. An IPv6 address that maps an IPv4 address is considered to be equal to
the IPv4 address (a mapped IPv6 address consists of 10 bytes of 0, 2 bytes of 255, and the 4-byte IPv4
address).

krb5_address_search

Purpose
Determine if an address is present in an address list.

Format
#include <skrb/krb5.h>
krb5_boolean krb5_address_search (

krb5_context context,

const krb5_address * addr,

krb5_address * const * addrlist)

© Copyright IBM Corp. 2000, 2002 7

|
|
|
|

Parameters

Input
context

Specifies the Kerberos context.

addr
Specifies the search address.

addrlist
Specifies the address list as an array of addresses. The last entry in the array must be a NULL
pointer. Specify NULL for this parameter if no address list is present.

Usage
The krb5_address_search() routine determines if an address is present in an address list.

The function return value is TRUE if the address is found in the address list or if no address list was
provided. The function return value is FALSE otherwise.

krb5_auth_con_free

Purpose
Releases an authentication context.

Format
#include <skrb/krb5.h>

krb5_error_code krb5_auth_con_free (

krb5_context context,

krb5_auth_context auth_context)

Parameters

Input
context

Specifies the Kerberos context.

auth_context
Specifies the authentication context.

Usage
The krb5_auth_con_free() routine releases an authentication context.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_auth_con_genaddrs

Purpose
Generates local and remote network addresses.

Kerberos APIs

8 V1R4.0 Network Authentication Service Programming

Format
#include <skrb/krb5.h>
krb5_error_code krb5_auth_con_genaddrs (

krb5_context context,

krb5_auth_context auth_context,
int fd,
int flags)

Parameters

Input
context

Specifies the Kerberos context.

auth_context
Specifies the authentication context.

fd Specifies the socket descriptor to use.

flags
Specifies the address generation flags as follows:

v KRB5_AUTH_CONTEXT_GENERATE_LOCAL_ADDR - Generate the local network address.

v KRB5_AUTH_CONTEXT_GENERATE_LOCAL_FULL_ADDR - Generate the local network address
and the local port.

v KRB5_AUTH_CONTEXT_GENERATE_REMOTE_ADDR - Generate the remote network address.

v KRB5_AUTH_CONTEXT_GENERATE_REMOTE_FULL_ADDR - Generate the remote network
address and the remote port.

Usage
The krb5_auth_con_genaddrs() routine generates the local and remote network addresses represented
by a socket connection. These addresses are stored in the authentication context and the can be retrieved
by calling the krb5_auth_con_getaddrs() routine.

The socket must have been created using the AF_INET or AF_INET6 address family. The socket must be
in the connected state if the remote network address is to be generated. An IPv6 address representing a
mapped IPv4 address is generated as an IPv4 address.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_auth_con_getaddrs

Purpose
Returns the local and remote network addresses stored in the authentication context.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_auth_con_getaddrs (

krb5_context context,
krb5_auth_context auth_context,
krb5_address ** local_addr,
krb5_address ** remote_addr)

Kerberos APIs

Chapter 2. Kerberos programming interfaces 9

|
|
|

Parameters

Input
context

Specifies the Kerberos context.

auth_context
Specifies the authentication context.

Output
local_addr

Returns the local network address. Specify NULL for this parameter if the local network address is not
required. The return value is NULL if the local network address has not been set. The
krb5_free_address() routine should be called to release the address when it is no longer needed.

remote_addr
Returns the remote network address. Specify NULL for this parameter if the remote network address is
not required. The return value is NULL if the remote network address has not been set. The
krb5_free_address() routine should be called to release the address when it is no longer needed.

Usage
The krb5_auth_con_getaddrs() routine returns the local and remote network addresses stored in the
authentication context.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code

krb5_auth_con_getauthenticator

Purpose
Returns the authenticator from the authentication context.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_auth_con_getauthenticator (

krb5_context context,
krb5_auth_context auth_context,
krb5_authenticator ** authent)

Parameters

Input
context

Specifies the Kerberos context.

auth_context
Specifies the authentication context.

Output
authent

Returns the authenticator. The krb5_free_authenticator() routine should be called to release the
authenticator when it is no longer needed.

Kerberos APIs

10 V1R4.0 Network Authentication Service Programming

Usage
The krb5_auth_con_getauthenticator() routine returns the authenticator used during mutual
authentication.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_auth_con_getflags

Purpose
Returns the current authentication context flags.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_auth_con_getflags (

krb5_context context,
krb5_auth_context auth_context,
krb5_int32 * flags)

Parameters

Input
context

Specifies the Kerberos context.

auth_context
Specifies the authentication context.

Output
flags

Returns the current flags. The following symbolic definitions are provided for the flag bits:

v KRB5_AUTH_CONTEXT_DO_TIME - Use timestamps in messages.

v KRB5_AUTH_CONTEXT_RET_TIME - Return timestamps to application.

v KRB5_AUTH_CONTEXT_DO_SEQUENCE - Use sequence numbers in messages.

v KRB5_AUTH_CONTEXT_RET_SEQUENCE - Return sequence numbers to application.

Usage
The krb5_auth_con_getflags() routine returns the current authentication context flags.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_auth_con_getivector

Purpose
Returns the address of the initial vector in the authentication context.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_auth_con_getivector (

krb5_context context,
krb5_auth_context auth_context,
krb5_pointer * ivec)

Kerberos APIs

Chapter 2. Kerberos programming interfaces 11

Parameters

Input
context

Specifies the Kerberos context.

auth_context
Specifies the authentication context.

Output
ivec

Returns the address of the initial vector. The authentication context still points to this vector, so any
changes made to the vector will affect future data encryption operations performed using the
authentication context.

Usage
The krb5_auth_con_getivector() routine returns the address of the initial vector used by the specified
authentication context. The application can then use this address to change the contents of the initial
vector. However, the application must not free the storage represented by the initial vector.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_auth_con_getkey

Purpose
Retrieves the encryption key stored in the authentication context.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_auth_con_getkey (

krb5_context context,
krb5_auth_context auth_context,
krb5_keyblock ** keyblock)

Parameters

Input
context

Specifies the Kerberos context.

auth_context
Specifies the authentication context.

Output
keyblock

Returns a keyblock containing the encryption key. The krb5_free_keyblock() routine routine should be
called to release the keyblock when it is no longer needed.

Usage
The krb5_auth_con_getkey() routine returns the current encryption key stored in the authentication
context. This is normally the session key that was obtained from an application request message.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

Kerberos APIs

12 V1R4.0 Network Authentication Service Programming

krb5_auth_con_getlocalseqnumber

Purpose
Returns the local message sequence number from the authentication context.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_auth_con_getlocalseqnumber (

krb5_context context,
krb5_auth_context auth_context,
krb5_int32 * seqnum)

Parameters

Input
context

Specifies the Kerberos context.

auth_context
Specifies the authentication context.

Output
seqnum

Returns the message sequence number.

Usage
The krb5_auth_con_getlocalseqnumber() routine returns the local message sequence number.
Sequence numbers are used when generating messages if the KRB5_AUTH_CONTEXT_DO_SEQUENCE
flag has been set in the authentication context.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_auth_con_getlocalsubkey

Purpose
Returns the local subsession key from the authentication context.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_auth_con_getlocalsubkey (

krb5_context context,
krb5_auth_context auth_context,
krb5_keyblock ** keyblock)

Parameters

Input
context

Specifies the Kerberos context.

auth_context
Specifies the authentication context.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 13

Output
keyblock

Returns the subsession key. The krb5_free_keyblock() routine should be called to release the
keyblock when it is no longer needed.

Usage
The krb5_auth_con_getlocalsubkey() routine returns the local subsession key from the authentication
context.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_auth_con_getports

Purpose
Returns the local and remote network ports stored in the authentication context.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_auth_con_getports (

krb5_context context,
krb5_auth_context auth_context,
krb5_address ** local_port,
krb5_address ** remote_port)

Parameters

Input
context

Specifies the Kerberos context.

auth_context
Specifies the authentication context.

Output
local_port

Returns the local network port. Specify NULL for this parameter if the local network port is not
required. The return value is NULL if the local network port has not been set. The
krb5_free_address() routine should be called to release the address when it is no longer needed.

remote_port
Returns the remote network port. Specify NULL for this parameter if the remote network port is not
required. The return value is NULL if the remote network port has not been set. The
krb5_free_address() routine should be called to release the address when it is no longer needed.

Usage
The krb5_auth_con_getports() routine returns the local and remote network ports stored in the
authentication context.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

Kerberos APIs

14 V1R4.0 Network Authentication Service Programming

krb5_auth_con_getrcache

Purpose
Returns the replay cache for the authentication context.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_auth_con_getrcache (

krb5_context context,
krb5_auth_context auth_context,
krb5_rcache * rcache)

Parameters

Input
context

Specifies the Kerberos context.

auth_context
Specifies the authentication context.

Output
rcache

Returns the replay cache handle.

Usage
The krb5_auth_con_getrcache() function returns the replay cache for the authentication context. A replay
cache is used when processing a message in order to detect message replay. A replay cache must be set
in the authentication context if message timestamps are being used.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_auth_con_getremoteseqnumber

Purpose
Returns the remote message sequence number from the authentication context.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_auth_con_getremoteseqnumber (

krb5_context context,
krb5_auth_context auth_context,
krb5_int32 * seqnum)

Parameters

Input
context

Specifies the Kerberos context.

auth_context
Specifies the authentication context.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 15

Output
seqnum

Returns the message sequence number.

Usage
The krb5_auth_con_getremoteseqnumber() routine returns the remote message sequence number.
Sequence numbers are used when generating messages if the KRB5_AUTH_CONTEXT_DO_SEQUENCE
flag has been set in the authentication context.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_auth_con_getremotesubkey

Purpose
Returns the remote subsession key from the authentication context.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_auth_con_getremotesubkey (

krb5_context context,
krb5_auth_context auth_context,
krb5_keyblock ** keyblock)

Parameters

Input
context

Specifies the Kerberos context.

auth_context
Specifies the authentication context.

Output
keyblock

Returns the subsession key. The krb5_free_keyblock() routine should be called to release the
keyblock when it is no longer needed.

Usage
The krb5_auth_con_getremotesubkey() routine returns the remote subsession key from the
authentication context.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_auth_con_init

Purpose
Creates an authentication context.

Kerberos APIs

16 V1R4.0 Network Authentication Service Programming

Format
#include <skrb/krb5.h>
krb5_error_code krb5_auth_con_init (

krb5_context context,
krb5_auth_context * auth_context)

Parameters

Input
context

Specifies the Kerberos context.

Output
auth_context

Returns the authentication context created by this call. The krb5_auth_con_free() routine should be
called to release the authentication context when it is no longer needed.

Usage
The krb5_auth_con_init() routine creates an authentication context. An authentication context contains
information relating to a single connection between two applications. The context is initialized to enable the
use of the replay cache (KRB5_AUTH_CONTEXT_DO_TIME) but to disable the use of message
sequence numbers. The krb5_auth_con_setflags() routine can be used to change these defaults.

The krb5_auth_con_free() routine should be used to release the authentication context when it is no
longer needed.

The Kerberos runtime provides no concurrency control for the authentication context. If the application
wants to use the same authentication context in multiple threads, it is the responsibility of the application
to serialize access to the authentication context so that just a single thread is accessing the authentication
context at any time. Because message sequence numbers are contained in the authentication context, this
serialization must be extended to encompass the message exchange between the two applications.
Otherwise, message sequence errors are liable to occur if the messages are delivered out of sequence.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_auth_con_initivector

Purpose
Allocates the initial encryption vector in the authentication context and sets it to zero.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_auth_con_initivector (

krb5_context context,
krb5_auth_context auth_context)

Parameters

Input
context

Specifies the Kerberos context.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 17

|

auth_context
Specifies the authentication context.

Usage
The krb5_auth_con_initivector() routine allocates the initial vector in the authentication context and sets
it to zero. The authentication context must already contain an encryption key that defines the type of
encryption to be used. The initial vector is used to initialize the encryption sequence each time a message
is encrypted. This serves to generate different encrypted results for the same message contents and
encryption key

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_auth_con_set_req_cksumtype

Purpose
Sets the checksum type used to generate an application request message.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_auth_con_initivector (

krb5_context context,
krb5_auth_context auth_context)

Parameters

Input
context

Specifies the Kerberos context.

auth_context
Specifies the authentication context.

cksumtype
Specifies the checksum type as follows:

v CKSUMTYPE_CRC32 - DES CRC checksum

v CKSUMTYPE_DESCBC - DES CBC checksum

v CKSUMTYPE_RSA_MD4 - MD4 checksum

v CKSUMTYPE_RSA_MD4_DES - DES MD4 checksum

v CKSUMTYPE_RSA_MD5 - MD5 checksum

v CKSUMTYPE_RSA_MD5_DES - DES MD5 checksum

v CKSUMTYPE_NIST_SHA - NIST SHA checksum

v CKSUMTYPE_HMAC_SHA1_DES3 - DES3 HMAC checksum

Usage
The krb5_auth_con_set_req_cksumtype() routine sets the checksum type to be used by the
krb5_mk_req() routine. This overrides the default value set by the ap_req_checksum_type entry in the
Kerberos configuration file.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

Kerberos APIs

18 V1R4.0 Network Authentication Service Programming

krb5_auth_con_set_safe_cksumtype

Purpose
Sets the checksum type used to generate a signed application message.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_auth_con_set_safe_cksumtype (

krb5_context context,
krb5_auth_context auth_context,
krb5_cksumtype cksumtype)

Parameters

Input
context

Specifies the Kerberos context.

auth_context
Specifies the authentication context.

cksumtype
Specifies the checksum type as follows:

v CKSUMTYPE_NULL - Select the default checksum algorithm based upon the encryption key stored
in the authentication context

v CKSUMTYPE_CRC32 - DES CRC checksum

v CKSUMTYPE_DESCBC - DES CBC checksum

v CKSUMTYPE_RSA_MD4_DES - DES MD4 checksum

v CKSUMTYPE_RSA_MD5_DES - DES MD5 checksum

v CKSUMTYPE_HMAC_SHA1_DES3 - DES3 HMAC checksum

Usage
The krb5_auth_con_set_req_cksumtype() routine sets the checksum type to be used by the
krb5_mk_safe() routine. This overrides the default value set by the ap_safe_checksum_type entry in the
Kerberos configuration file. The krb5_mk_safe() function requires a keyed checksum. In addition, the
checksum must be compatible with the encryption key in the authentication context.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_auth_con_setaddrs

Purpose
Sets the local and remote address values in the authentication context.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_auth_con_setaddrs (

krb5_context context,
krb5_auth_context auth_context,
krb5_address * local_addr,
krb5_address * remote_addr)

Kerberos APIs

Chapter 2. Kerberos programming interfaces 19

Parameters

Input
context

Specifies the Kerberos context.

auth_context
Specifies the authentication context.

local_addr
Specifies the local network address. Specify NULL for this parameter if the local network address is
not to be changed.

remote_addr
Specifies the remote network address. Specify NULL for this parameter if the remote network address
is not to be changed.

Usage
The krb5_auth_con_setaddrs() routine sets the local and remote network address values in the
authentication context. These values are used when obtaining tickets and constructing authenticators. A
mapped IPv6 address is stored in the authentication context as the corresponding IPv4 address.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_auth_con_setflags

Purpose
Sets the authentication context flags.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_auth_con_setflags (

krb5_context context,
krb5_auth_context auth_context,
krb5_int32 flags)

Parameters

Input
context

Specifies the Kerberos context.

auth_context
Specifies the authentication context.

flags
Specifies the context flags. The following symbolic definitions are provided for the flag bits:

v KRB5_AUTH_CONTEXT_DO_TIME - Use timestamps in messages.

v KRB5_AUTH_CONTEXT_RET_TIME - Return timestamps to application.

v KRB5_AUTH_CONTEXT_DO_SEQUENCE - Use sequence numbers in messages.

v KRB5_AUTH_CONTEXT_RET_SEQUENCE - Return sequence numbers to application.

Kerberos APIs

20 V1R4.0 Network Authentication Service Programming

|
|
|

Usage
The krb5_auth_con_setflags() routine sets the authentication context flags.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_auth_con_setivector

Purpose
Sets the initial encryption vector in the authentication context.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_auth_con_setivector (

krb5_context context,
krb5_auth_context auth_context,
krb5_pointer ivec)

Parameters

Input
context

Specifies the Kerberos context.

auth_context
Specifies the authentication context.

ivec
Specifies the initial vector.

Usage
The krb5_auth_con_setivector() routine sets the initial vector in the authentication context. A copy is not
made of the initial vector, so the application must not change or free the buffer specified by the ivec
parameter until either a new initial vector is set or the authentication context is released. The initial vector
is used to initialize the encryption sequence each time a message is encrypted. This serves to generate
different encrypted results for the same message contents and encryption key.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_auth_con_setports

Purpose
Sets the local and remote network ports in the authentication context.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_auth_con_setports (

krb5_context context,
krb5_auth_context auth_context,
krb5_address * local_port,
krb5_address * remote_port)

Kerberos APIs

Chapter 2. Kerberos programming interfaces 21

|

Parameters

Input
context

Specifies the Kerberos context.

auth_context
Specifies the authentication context.

local_port
Specifies the local network port. Specify NULL for this parameter if the local network port is not to be
changed

remote_port
Specifies the remote network port. Specify NULL for this parameter if the remote network port is not to
be changed.

Usage
The krb5_auth_con_setports() routine sets the local and remote network ports in the authentication
context.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_auth_con_setrcache

Purpose
Sets the replay cache for the authentication context.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_auth_con_setrcache (

krb5_context context,
krb5_auth_context auth_context,
krb5_rcache rcache)

Parameters

Input
context

Specifies the Kerberos context.

auth_context
Specifies the authentication context.

rcache
Specifies the replay cache handle.

Usage
The krb5_auth_con_setrcache() function sets the replay cache for the authentication context. A replay
cache is used when processing a message in order to detect message replay. A replay cache must be set
in the authentication context if message timestamps are being used. The krb5_rc_default() and
krb5_rc_resolve() routines can be used to obtain a replay cache handle.

The replay cache must not be closed by the application while it is in use by the authentication context. The
krb5_auth_con_free() routine closes the replay cache. The application can use the same replay cache

Kerberos APIs

22 V1R4.0 Network Authentication Service Programming

|
|

with multiple authentication contexts by calling krb5_auth_con_setrcache() with a NULL replay cache
handle before calling krb5_auth_con_free() to free the authentication context. This leaves the replay
cache open and available for use by the application.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_auth_con_setuseruserkey

Purpose
Sets the user-to-user key in the authentication context.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_auth_con_setuseruserkey (

krb5_context context,
krb5_auth_context auth_context,
krb5_keyblock * keyblock)

Parameters

Input
context

Specifies the Kerberos context.

auth_context
Specifies the authentication context.

keyblock
Specifies the user key.

Usage
The krb5_auth_con_setuseruserkey() routine sets the user key in the authentication context. This is
useful only prior to calling the krb5_rd_req() routine for user-to-user authentication where the server has
the key and needs to use it to decrypt the incoming request. Once the request has been decrypted, this
key is no longer necessary and is replaced in the authentication context with the session key obtained
from the decoded request.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_auth_to_rep

Purpose
Converts Kerberos authenticator to replay entry.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_auth_to_rep (

krb5_context context,
krb5_tkt_authent * authent,
krb5_donot_replay * replay)

Kerberos APIs

Chapter 2. Kerberos programming interfaces 23

|
|
|

Parameters

Input
context

Specifies the Kerberos context.

authent
Specifies the Kerberos authenticator.

Output
replay

Returns the replay entry data. The krb5_rc_free_entry_contents() routine should be called to release
the entry data when it is no longer needed.

Usage
The krb5_auth_to_rep() routine extracts information from ticket authentication data and builds a replay
cache entry. This entry can then be used to check for ticket replay by calling the krb5_rc_store() routine
to save the entry in the replay cache.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_build_principal

Purpose
Builds a Kerberos principal from component strings.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_build_principal (

krb5_context context,
krb5_principal * ret_princ,
int realm_len,
krb5_const char * realm,
char * name1, name2, ...)

Parameters

Input
context

Specifies the Kerberos context.

realm_len
Specifies the length of the realm name.

realm
Specifies the realm name.

namen
One or more name components. The end of the components is indicated by specifying NULL for the
parameter.

Output
ret_princ

Returns the Kerberos principal. The krb5_free_principal() routine should be called to release the
principal when it is no longer needed.

Kerberos APIs

24 V1R4.0 Network Authentication Service Programming

Usage
The krb5_build_principal() routine creates a Kerberos principal from its component strings.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

For example, to create the principal bambi/admin@forest , make the following call:
retval = krb5_build_principal(context, &princ, 6, "forest",

"bambi", "admin", NULL);

krb5_build_principal_ext

Purpose
Builds a Kerberos principal from component strings.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_build_principal_ext (

krb5_context context,
krb5_principal * ret_princ,
int realm_len,
krb5_const char * realm,
int name1_len,
char * name1,
int name2_len,
char * name2, ...)

Parameters

Input
context

Specifies the Kerberos context.

realm_len
Specifies the length of the realm name.

realm
Specifies the realm name.

lenn/namen
One or more name components. Each component consists of its length followed by its value. The end
of the components is indicated by specifying a length of zero.

Output
ret_princ

Returns the Kerberos principal. The krb5_free_principal() routine should be called to release the
principal when it is no longer needed.

Usage
The krb5_build_principal_ext() routine creates a Kerberos principal from its component strings. This
routine is similar to the krb5_build_principal() routine except that the name component lengths are
explicitly specified on the function call.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

For example, to create the principal bambi/admin@forest , make the following call:

Kerberos APIs

Chapter 2. Kerberos programming interfaces 25

retval = krb5_build_principal_ext(context, &princ, 6, "forest",
5, "bambi", 5, "admin", 0);

krb5_build_principal_ext_va

Purpose
Build a Kerberos principal from component strings.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_build_principal_ext_va (

krb5_context context,
krb5_principal * ret_princ,
int realm_len,
krb5_const char * realm,
va_list ap)

Parameters

Input
context

Specifies the Kerberos context.

realm_len
Specifies the length of the realm name.

realm
Specifies the realm name.

ap A variable argument list consisting of name lengths and character pointers that specify one or more
name components. The end of the components is indicated by specifying a name length of zero.

Output
ret_princ

Returns the Kerberos principal. The krb5_free_principal() routine should be called to release the
principal when it is no longer needed.

Usage
The krb5_build_principal_ext_va() routine creates a Kerberos principal from its component strings. It is
similar to the krb5_build_principal_ext() routine except the name components are specified as a variable
argument list instead of as discrete parameters on the function call.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

For example, assume we have a function my_func, which is called with a list of names. It could generate a
Kerberos principal from these names as follows:
#include <stdarg.h>
#include <skrb/krb5.h>
krb5_error_code my_func(int realm_len, char *realm, ...) {

va_list ap;
krb5_error_code retval;
va_start(ap, realm);
retval = krb5_build_principal_ext_va(context, &princ,

realm_len, realm, ap);
va_end(ap);
return retval;

}

Kerberos APIs

26 V1R4.0 Network Authentication Service Programming

int main(int argc, char *argv[]) {
my_func(6, "forest", 5, "bambi", 5, "admin", 0);
return 0;

}

krb5_build_principal_va

Purpose
Builds a Kerberos principal from component strings.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_build_principal_va (

krb5_context context,
krb5_principal * ret_princ,
int realm_len,
krb5_const char * realm,
va_list ap)

Parameters

Input
context

Specifies the Kerberos context.

realm_len
Specifies the length of the realm name.

realm
Specifies the realm name.

ap A variable argument list consisting of name lengths and character pointers that specify one or more
name components. The end of the components is indicated by specifying NULL for the parameter.

Output
ret_princ

Returns the Kerberos principal. The krb5_free_principal() routine should be called to release the
principal when it is no longer needed.

Usage
The krb5_build_principal_va() routine creates a Kerberos principal from its component strings. It is
similar to the krb5_build_principal() routine except the name components are specified as a variable
argument list instead of as discrete parameters on the function call.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

For example, assume we have a function my_func, which is called with a list of names. It could generate a
Kerberos principal from these names as follows:
#include <stdarg.h>
#include <skrb/krb5.h>
krb5_error_code my_func(char *realm, ...) {

va_list ap;
krb5_error_code retval;
va_start(ap, realm);
retval = krb5_build_principal_va(context, &princ,

strlen(realm), realm, ap);
va_end(ap);

Kerberos APIs

Chapter 2. Kerberos programming interfaces 27

return retval;
}
int main(int argc, char *argv[]) {

my_func("forest", "bambi", "admin", NULL);
return 0;

}

krb5_c_block_size

Purpose
Returns the cipher block size.

Format
#include <skrb/krb5.h>

krb5_error_code krb5_c_block_size (
krb5_context context,
krb5_enctype enctype,
krb5_size * blocksize)

Parameters

Input
context

Specifies the Kerberos context.

enctype
Specifies the encryption algorithm.

Output
blocksize

Returns the cipher blocksize for the specified encryption algorithm.

Usage
The krb5_c_block_size() routine returns the cipher block size for the indicated encryption algorithm. The
encrypted data generated by the krb5_c_encrypt() routine is a multiple of the cipher block size. In
addition, the clear text input to krb5_c_encrypt() is padded with binary zero to a multiple of the cipher
block size.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_c_checksum_length

Purpose
Returns the checksum length.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_c_checksum_length (

krb5_context context,
krb5_cksumtype cksumtype,
krb5_size * cksumlen)

Kerberos APIs

28 V1R4.0 Network Authentication Service Programming

|
|
|
|
|
|

|
|
|
|
|

Parameters

Input
context

Specifies the Kerberos context.

cksumtype
Specifies the checksum algorithm.

Output
cksumlen

Returns the length of the checksum data.

Usage
The krb5_c_checksum_length() routine returns the length of the checksum for the specified checksum
algorithm.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_c_decrypt

Purpose
Decrypts a data block.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_c_decrypt (

krb5_context context,
const krb5_keyblock * key,
krb5_keyusage usage,
const krb5_data * ivec,
const krb5_enc_data * input,
krb5_data * output)

Parameters

Input
context

Specifies the Kerberos context.

key
Specifies the encryption key.

usage
Specifies the key usage. This value is used to derive the actual encryption key from the supplied key
and allows different message types to be encrypted using different keys. Specify
KRB5_KEYUSAGE_NONE if you do not want to derive separate keys for each message type.

ivec
Specifies the initial vector. The initial vector provides the starting value for the encryption process.
Changing the initial vector causes the encrypted result to be different even when the key and clear text
are the same. The length of the initial vector must be the cipher block size as returned by the
krb5_c_block_size() routine. Specify NULL for this parameter if you do not want to use an initial
vector.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 29

input
Specifies the data to be decrypted. The enctype field for the encrypted data must either match the
enctype field of the supplied key or must be set to ENCTYPE_NULL. The data to be decrypted must
have been encrypted by the krb5_c_encrypt() routine using the same key and key usage.

Output
output

Specifies the result buffer. The application is responsible for allocating the result buffer. The buffer
must be large enough to hold the decrypted data plus any padding (the safest method is to make the
result buffer the same length as the encrypted data). Since the clear text is padded to a multiple of the
cipher block size during the encryption process, the application must provide a mechanism to
determine the actual data length (for example, by including the data length as part of the clear text).

Usage
The krb5_c_decrypt() routine decrypts a data block. Due to government export regulations, some
encryption algorithms may not be available on the current system. The function return value is set to
KRB5_NO_CONF if the requested encryption algorithm is valid but is not available.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_c_encrypt

Purpose
Encrypts a data block.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_c_encrypt (

krb5_context context,
const krb5_keyblock * key,
krb5_keyusage usage,
const krb5_data * ivec,
const krb5_data * input,
krb5_enc_data * output)

Parameters

Input
context

Specifies the Kerberos context.

key
Specifies the encryption key.

usage
Specifies the key usage. This value is used to derive the actual encryption key from the supplied key
and allows different message types to be encrypted using different keys. Specify
KRB5_KEYUSAGE_NONE if you do not want to derive separate keys for each message type.

ivec
Specifies the initial vector. The initial vector provides the starting value for the encryption process.
Changing the initial vector causes the encrypted result to be different even when the key and clear text
are the same. The length of the initial vector must be the cipher block size as returned by the
krb5_c_block_size() routine. Specify NULL for this parameter if you do not want to use an initial
vector.

Kerberos APIs

30 V1R4.0 Network Authentication Service Programming

input
Specifies the data to be encrypted. The data is padded on the end with binary zero if the length is not
a multiple of the cipher block size.

Output
output

Specifies the result buffer. The application is responsible for allocating the result buffer and setting the
length and data fields. The buffer must be large enough to hold the encrypted data, including
confounder, checksum and padding. The required buffer length can be obtained by calling the
krb5_c_encrypt_length() routine. Upon completion, the length field is set to the actual encrypted data
length and the enctype field is set to the encryption type of the encryption key.

Usage
The krb5_c_encrypt() routine encrypts a data block. Due to government export regulations, some
encryption algorithms may not be available. The function return value is set to KRB5_NO_CONF if the
requested encryption algorithm is valid but is not available on the current system.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_c_encrypt_length

Purpose
Returns the encrypted data length.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_c_encrypt_length (

krb5_context context,
krb5_enctype enctype,
krb5_size datalen,
krb5_size * enclen)

Parameters

Input
context

Specifies the Kerberos context.

enctype
Specifies the encryption algorithm.

datalen
Specifies the length of the data to be encrypted.

Output
enclen

Returns the length of the encrypted data. This length includes confounder, checksum and padding
added by the specified encryption algorithm.

Usage
The krb5_c_encrypt_length() routine returns the length of the encrypted data generated by the
krb5_c_encrypt() routine. This value is then used to allocate the result buffer before calling
krb5_c_encrypt() .

Kerberos APIs

Chapter 2. Kerberos programming interfaces 31

|
|
|
|
|
|

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_c_enctype_compare

Purpose
Compares two encryption types to determine if they are similar.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_c_enctype_compare (

krb5_context context,
krb5_enctype e1,
krb5_enctype e2,
krb5_boolean * similar)

Parameters

Input
context

Specifies the Kerberos context.

e1 Specifies the first encryption type.

e2 Specifies the second encryption type.

Output
similar

Returns TRUE if the encryption types are similar and FALSE otherwise.

Usage
The krb5_c_enctype_compare() routine compares two encryption types. Encryption types are similar if
they use the same encryption provider and have the same key generation algorithm. Similar encryption
types use the same encryption key. For example, ENCTYPE_DES_CBC_CRC,
ENCTYPE_DES_CBC_MD4 and ENCTYPE_DES_CBC_MD5 are similar encryption types.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_c_keyed_checksum_types

Purpose
Returns a list of keyed checksum types compatible with an encryption type.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_c_keyed_checksum_types (

krb5_context context,
krb5_enctype enctype,
int * count,
krb5_cksumtype ** cksumtypes)

Kerberos APIs

32 V1R4.0 Network Authentication Service Programming

Parameters

Input
context

Specifies the Kerberos context.

enctype
Specifies the first encryption type.

Output
count

Returns the number of elements in the returned array.

cksumtypes
Returns an array of checksum types that are compatible with the specified encryption type. The array
should be released when it is no longer needed by calling the krb5_free_cksumtypes() routine.

Usage
The krb5_c_keyed_checksum_types() routine returns an array of checksum types that are compatible
with the specified encryption type. A checksum type is compatible if it uses an encryption key that is
supported by the specified encryption type. For example, CKSUMTYPE_DESCBC is a compatible
checksum type for the ENCTYPE_DES_CBC_CRC encryption type. A derived key checksum type is
compatible with any encryption type.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_c_make_checksum

Purpose
Generates the checksum for a data block.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_c_make_checksum (

krb5_context context,
krb5_cksumtype cksumtype,
const krb5_keyblock * key,
krb5_keyusage usage,
const krb5_data * input,
krb5_checksum * cksum)

Parameters

Input
context

Specifies the Kerberos context.

cksumtype
Specifies the checksum type.

key
Specifies the key for a keyed checksum. This parameter is ignored if the specified checksum algorithm
does not use an encryption key.

usage
Specifies the key usage. This value is used to derive the actual encryption key from the supplied key

Kerberos APIs

Chapter 2. Kerberos programming interfaces 33

and allows different message types to use different keys. Specify KRB5_KEYUSAGE_NONE if you do
not want to derive separate keys for each message type. This parameter is ignored if the specified
checksum algorithm does not use an encryption key.

input
Specifies the data to be used to generate the checksum.

Output
cksum

Returns the generated checksum. The checksum contents should be released when no longer needed
by calling the krb5_free_checksum_contents() routine.

Usage
The krb5_c_make_checksum() routine generates a checksum for the supplied data. The
krb5_c_verify_checksum() routine can then be used to verify the data integrity.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_c_make_random_key

Purpose
Generates a random encryption key.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_c_make_random_key (

krb5_context context,
krb5_enctype enctype,
krb5_keyblock * random_key)

Parameters

Input
context

Specifies the Kerberos context.

enctype
Specifies the encryption type for the generated key.

Output
random_key

Returns the generated random key. The keyblock contents should be released when no longer needed
by calling the krb5_free_keyblock_contents() routine.

Usage
The krb5_c_make_random_key() routine generates a random encryption key. This key can then be used
to encrypt data or generate keyed checksums using the requested encryption algorithm.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

Kerberos APIs

34 V1R4.0 Network Authentication Service Programming

krb5_c_random_make_octets

Purpose
Generates a random binary string.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_c_random_make_octets (

krb5_context context,
krb5_data * data)

Parameters

Input
context

Specifies the Kerberos context.

Output
data

Returns the generated random data. The application is responsible for allocating the result buffer. The
length field specifies the number of random bytes to be generated.

Usage
The krb5_c_random_make_octets() routine generates random bytes. The krb5_c_random_seed()
routine can be used to change the random number generator seed.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_c_random_seed

Purpose
Set a new seed for the random number generator.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_c_random_seed (

krb5_context context,
krb5_data * data)

Parameters

Input
context

Specifies the Kerberos context.

data
Specifies the new seed for the random number generator.

Usage
The krb5_c_random_seed() routine sets a new seed for the random number generator used by the
krb5_c_random_make_octets() routine.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 35

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_c_string_to_key

Purpose
Generates an encryption key from a text string.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_c_string_to_key (

krb5_context context,
krb5_enctype enctype,
const krb5_data * string,
const krb5_data * salt,
krb5_keyblock * key)

Parameters

Input
context

Specifies the Kerberos context.

enctype
Specifies the encryption type of the generated key.

string
Specifies the text string used to generate the key. This is normally a text password.

salt
Specifies the salt string used to generate the key. This is normally a string composed of the Kerberos
realm and principal names. Specify NULL for this parameter if no salt is to be used when generating
the key.

Output
key

Returns the generated key. The key contents should be released when no longer needed by calling
the krb5_free_keyblock_contents() routine.

Usage
The krb5_c_string_to_key() routine generates an encryption key of the specified type. One use for this
routine is to generate an encryption key from a user password.

The usual Kerberos password routines generate an encryption key from a password using a salt
composed of the realm and the principal with component separators removed. For example, if the realm is
KRB390.IBM.COM and the principal is rwh/admin , the salt is ″KRB390.IBM.COMrwhadmin″.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_c_verify_checksum

Purpose
Verifies the checksum for a data block.

Kerberos APIs

36 V1R4.0 Network Authentication Service Programming

Format
#include <skrb/krb5.h>
krb5_error_code krb5_c_verify_checksum (

krb5_context context,
const krb5_keyblock * key,
krb5_keyusage usage,
const krb5_data * data,
const krb5_checksum * cksum,
krb5_boolean * valid)

Parameters

Input
context

Specifies the Kerberos context.

key
Specifies the key for a keyed checksum. This parameter is ignored if the specified checksum algorithm
does not use an encryption key.

usage
Specifies the key usage. This value is used to derive the actual encryption key from the supplied key
and allows different message types to use different keys. Specify KRB5_KEYUSAGE_NONE if you do
not want to derive separate keys for each message type. This parameter is ignored if the specified
checksum algorithm does not use an encryption key.

data
Specifies the data to be used.

cksum
Specifies the checksum to be verified.

Output
valid

Returns TRUE if the supplied checksum matches the checksum generated for the supplied data,
otherwise returns FALSE.

Usage
The krb5_c_verify_checksum() routine verifies that a data block has not been modified, by computing the
checksum for the supplied data, and then comparing this checksum to the checksum provided by the
application.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_cc_close

Purpose
Closes a credentials cache.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_cc_close (

krb5_context context,
krb5_ccache ccache)

Kerberos APIs

Chapter 2. Kerberos programming interfaces 37

Parameters

Input
context

Specifies the Kerberos context.

ccache
Specifies the credentials cache handle.

Usage
The krb5_cc_close() routine closes a credentials cache. The cache handle may not be used once this
routine completes.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_cc_default

Purpose
Resolves the default credentials cache.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_cc_default (

krb5_context context,
krb5_ccache * ccache)

Parameters

Input
context

Specifies the Kerberos context.

Output
ccache

Returns the credentials cache handle.

Usage
The krb5_cc_default() routine resolves the default credentials cache and returns a handle that can be
used to access the cache. This is equivalent to calling the krb5_cc_resolve() routine with the name
returned by the krb5_cc_default_name() routine.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_cc_default_name

Purpose
Returns the default credentials cache name.

Format
#include <skrb/krb5.h>
char * krb5_cc_default_name (

krb5_context context)

Kerberos APIs

38 V1R4.0 Network Authentication Service Programming

Parameters

Input
context

Specifies the Kerberos context.

Usage
The krb5_cc_default_name() routine returns the name of the default credentials cache for the Kerberos
context. The default credentials cache is determined as follows:

1. The name set by the krb5_cc_set_default_name() routine.

2. The value of the KRB5CCNAME environment variable.

3. The contents of the file specified by the _EUV_SEC_KRB5CCNAME_FILE environment variable (the
file name defaults to $HOME/krb5ccname if _EUV_SEC_KRB5CCNAME_FILE is not set).

4. A new credentials cache name is generated if no default name is found.

The function return value is NULL if an error occurred. Otherwise, it is the address of the default
credentials cache name. This is a pointer to read-only storage and must not be freed by the application.

The krb5_cc_default_name() and krb5_cc_set_default_name() routines use storage within the Kerberos
context to hold the default credentials cache name. Thus, these routines are not thread-safe unless a
separate Kerberos context is used for each thread.

krb5_cc_destroy

Purpose
Deletes a credentials cache.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_cc_destroy (

krb5_context context,
krb5_ccache ccache)

Parameters

Input
context

Specifies the Kerberos context.

ccache
Specifies the credentials cache handle.

Usage
The krb5_cc_destroy() routine closes and deletes a credentials cache. The cache handle may not be
used after this routine completes.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 39

krb5_cc_end_seq_get

Purpose
Ends the sequential reading of the credentials cache.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_cc_end_seq_get (

krb5_context context,
krb5_ccache ccache,
krb5_cc_cursor * cursor)

Parameters

Input
context

Specifies the Kerberos context.

ccache
Specifies the credentials cache handle.

Input/Output
cursor

Specifies the cursor created by the krb5_cc_start_seq_get() routine.

Usage
The krb5_cc_end_seq_get() routine unlocks the credentials cache and releases the cursor. The cursor
may not be used once krb5_cc_end_seq_get() has completed. The krb5_cc_end_seq_get() must be
called on the same thread that called krb5_cc_start_seq_get() routine.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_cc_generate_new

Purpose
Generates a new credentials cache.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_cc_generate_new (

krb5_context context,
const char * type,
krb5_ccache * ccache)

Parameters

Input
context

Specifies the Kerberos context.

type
Specifies the credentials cache type (for example, FILE).

Kerberos APIs

40 V1R4.0 Network Authentication Service Programming

Output
ccache

Returns the credentials cache handle. Either the krb5_cc_close() routine or krb5_cc_destroy()
routine should be called to release the handle when it is no longer needed.

Usage
The krb5_cc_generate_new() routine creates a new credentials cache with a unique name. The
krb5_cc_initialize() function must be called to set the cache principal before storing any credentials in the
cache.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_cc_get_name

Purpose
Returns the credentials cache name.

Format
#include <skrb/krb5.h>
char * krb5_cc_get_name (

krb5_context context,
krb5_ccache ccache)

Parameters

Input
context

Specifies the Kerberos context.

ccache
Specifies the credentials cache handle.

Usage
The krb5_cc_get_name() routine returns the name of the credentials cache. The returned name does not
include the credentials cache type prefix.

The function return value is the address of the credentials cache name. This is a read-only value and must
not be freed by the application.

krb5_cc_get_principal

Purpose
Returns the principal associated with the credentials cache.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_cc_get_principal (

krb5_context context,
krb5_ccache ccache,
krb5_principal * principal)

Kerberos APIs

Chapter 2. Kerberos programming interfaces 41

Parameters

Input
context

Specifies the Kerberos context.

ccache
Specifies the credentials cache handle.

Output
principal

Returns the principal. The krb5_free_principal() routine should be called to release the principal when
it is no longer needed.

Usage
The krb5_cc_get_principal() routine returns the principal associated with the credentials cache. The
principal name is set by the krb5_cc_initialize() routine. This is the default client principal for tickets
stored in the credentials cache.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_cc_get_type

Purpose
Returns the credentials cache type.

Format
#include <skrb/krb5.h>
char * krb5_cc_get_type (

krb5_contextcontext,
krb5_ccache ccache)

Parameters

Input
context

Specifies the Kerberos context.

ccache
Specifies the credentials cache handle.

Usage
The krb5_cc_get_type() routine returns the credentials cache type.

The function return value is the address of the credentials cache type. This is a read-only value and must
not be freed by the application.

krb5_cc_initialize

Purpose
Initializes a credentials cache.

Kerberos APIs

42 V1R4.0 Network Authentication Service Programming

Format
#include <skrb/krb5.h>
krb5_error_code krb5_cc_initialize (

krb5_context context,
krb5_ccache ccache,
krb5_principal principal)

Parameters

Input
context

Specifies the Kerberos context.

ccache
Specifies the credentials cache handle.

principal
Specifies the default principal for the cache.

Usage
The krb5_cc_initialize() routine initializes a credentials cache. Any existing credentials are discarded and
the principal name for the cache is set to the value specified. The principal name is the default client name
for tickets, which are placed into the cache. Initialize a new cache before storing tickets in it.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_cc_next_cred

Purpose
Returns the next entry from the credentials cache.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_cc_next_cred (

krb5_context context,
krb5_ccache ccache,
krb5_cc_cursor * cursor,
krb5_creds * creds)

Parameters

Input
context

Specifies the Kerberos context.

ccache
Specifies the credentials cache handle.

Input/Output
cursor

Specifies the cursor created by the krb5_cc_start_seq_get() routine. The cursor is updated upon
successful completion of this routine.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 43

Output
creds

Returns the contents of the cache entry. The krb5_free_cred_contents() routine should be called to
release the credentials contents when they are no longer needed.

Usage
The krb5_cc_next_cred() routine reads the next entry from the credentials cache and returns it to the
application. The krb5_cc_start_seq_get() routine must be called to begin the sequential read operation.
The krb5_cc_next_cred() routine is then called repeatedly to read cache entries. Finally, the
krb5_cc_end_seq_get() routine is called when no more entries are to be read. The krb5_cc_next_cred()
routine must be called on the same thread that called the krb5_cc_start_seq_get() routine.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_cc_register

Purpose
Defines a new credentials cache type.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_cc_register (

krb5_context context,
krb5_cc_ops * ops,
krb5_boolean override)

Parameters

Input
context

Specifies the Kerberos context.

ops
Specifies the credentials cache operations vector. This vector defines the routines that are called to
perform the credentials cache operations for the new cache type.

override
Specifies whether to override an existing definition for the same type. An error is returned if the type is
already registered and FALSE is specified for this parameter.

Usage
The krb5_cc_register() routine registers a new credentials cache type. After the new type is registered, it
can be used by any thread in the current process. The type is not known outside the current process and
is no longer registered when the application ends.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_cc_remove_cred

Purpose
Removes an entry from the credentials cache.

Kerberos APIs

44 V1R4.0 Network Authentication Service Programming

Format
#include <skrb/krb5.h>
krb5_error_code krb5_cc_remove_cred (

krb5_context context,
krb5_ccache ccache,
krb5_flags flags,
krb5_creds * mcreds)

Parameters

Input
context

Specifies the Kerberos context.

ccache
Specifies the credentials cache handle.

flags
Specifies the search flags that are used to determine whether a particular cache entry should be
removed. The following symbolic definitions are provided for the flags and should be ORed together to
set the desired search flags:

v KRB5_TC_MATCH_TIMES - The renew_till and endtime values in the cache entry must be greater
than the values in the match credentials. A time value is ignored if it is zero.

v KRB5_TC_MATCH_IS_SKEY - The is_skey flag in the cache entry must be the same as the
is_skey flag in the match credentials.

v KRB5_TC_MATCH_FLAGS - All of the flags set in the match credentials must also be set in the
cache entry.

v KRB5_TC_MATCH_TIMES_EXACT - The time fields in the cache entry must exactly match the time
fields in the match credentials.

v KRB5_TC_MATCH_FLAGS_EXACT - The flags in the cache entry must exactly match the flags in
the match credentials.

v KRB5_TC_MATCH_AUTHDATA - The authorization data in the cache entry must be identical to the
authorization data in the match credentials.

v KRB5_TC_MATCH_SRV_NAMEONLY - Only the name portion of the server principal in the cache
entry needs to match the server principal in the match credentials. The realm values may be
different. If this flag is not set, the complete principal name must match.

v KRB5_TC_MATCH_2ND_TKT - The second ticket in the cache entry must exactly match the
second ticket in the match credentials.

v KRB5_TC_MATCH_KTYPE - The encryption key type in the cache entry must match the encryption
key type in the match credentials.

mcreds
Specifies the match credentials. Fields from these credentials are matched with fields in the cache
entries based upon the search flags. The client and server principals must always be set in the match
credentials no matter what search flags are specified.

Usage
The krb5_cc_remove_cred() routine removes matching entries from the credentials cache. The client
principal must always match. The KRB5_TC_MATCH_SRV_NAMEONLY flag controls how much of the
server principal must match.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 45

Note: The krb5_cc_remove_cred() routine is not supported for the FILE, MEMORY, or XMEM cache
types and returns an error code of KRB5_CC_OP_NOT_SUPPORTED.

krb5_cc_resolve

Purpose
Resolves a credentials cache name.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_cc_resolve (

krb5_context context,
char * cache_name,
krb5_ccache * ccache)

Parameters

Input
context

Specifies the Kerberos context.

cache_name
Specifies the credentials cache name in the format type:name. The type must be a registered
credentials cache type and the name must uniquely identify a particular credentials cache of the
specified type.

Output
ccache

Returns the credentials cache handle.

Usage
The krb5_cc_resolve() routine resolves a credentials cache name and returns a handle that can be used
to access the cache. The Kerberos runtime supports three credentials cache types: FILE, MEMORY, and
XMEM. Additional credentials cache types can be registered by the application by calling the
krb5_cc_register() routine. If no type is specified, the default is FILE.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_cc_retrieve_cred

Purpose
Retrieves a set of credentials from the cache.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_cc_retrieve_cred (

krb5_context context,
krb5_ccache ccache,
krb5_flags flags,
krb5_creds * mcreds,
krb5_creds * creds)

Kerberos APIs

46 V1R4.0 Network Authentication Service Programming

Parameters

Input
context

Specifies the Kerberos context.

ccache
Specifies the credentials cache handle.

flags
Specifies the search flags that are used to determine whether or not a particular cache entry should
be returned to the caller. The following symbolic definitions are provided for the flags and should be
ORed together to set the desired search flags:

v KRB5_TC_MATCH_TIMES - The renew_till and endtime values in the cache entry must be greater
than the values in the match credentials. A time value is ignored if it is zero.

v KRB5_TC_MATCH_IS_SKEY - The is_skey flag in the cache entry must be the same as the
is_skey flag in the match credentials.

v KRB5_TC_MATCH_FLAGS - All of the flags set in the match credentials must also be set in the
cache entry.

v KRB5_TC_MATCH_TIMES_EXACT - The time fields in the cache entry must exactly match the time
fields in the match credentials.

v KRB5_TC_MATCH_FLAGS_EXACT - The flags in the cache entry must exactly match the flags in
the match credentials

v KRB5_TC_MATCH_AUTHDATA - The authorization data in the cache entry must be identical to the
authorization data in the match credentials.

v KRB5_TC_MATCH_SRV_NAMEONLY - Only the name portion of the server principal in the cache
entry needs to match the server principal in the match credentials. The realm values may be
different. If this flag is not set, the complete principal name must match.

v KRB5_TC_MATCH_2ND_TKT - The second ticket in the cache entry must exactly match the
second ticket in the match credentials.

v KRB5_TC_MATCH_KTYPE - The encryption key type in the cache entry must match the encryption
key type in the match credentials.

v KRB5_TC_SUPPORTED_KTYPES - The encryption key type in the cache entry must be one of the
encryption types specified by the default_tgs_enctypes value in the Kerberos configuration profile.
If the default_tgs_enctypes value contains multiple encryption types, the list is processed from left
to right and the first matching credential is returned.

mcreds
Specifies the match credentials. Fields from these credentials will be matched with fields in the cache
entries based upon the search flags. The client and server principals must always be set in the match
credentials no matter what search flags are specified.

Output
creds

Returns the contents of the matched cache entry. The krb5_free_cred_contents() routine should be
called to release the credentials contents when they are no longer needed.

Usage
The krb5_cc_retrieve_cred() routine searches the credentials cache and returns an entry that matches
the credentials specified. The client principal must always match. The
KRB5_TC_MATCH_SRV_NAMEONLY flag controls how much of the server principal must match.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 47

krb5_cc_set_default_name

Purpose
Sets the default credentials cache name for the Kerberos context.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_cc_set_default_name (

krb5_context context,
const char * name)

Parameters

Input
context

Specifies the Kerberos context.

name
Specifies the credentials cache name.

Usage
The krb5_cc_set_default_name() routine sets the name of the default credentials cache for the Kerberos
context. Specifying NULL for the name causes the normal search order to be used to determine the
default credentials cache name (refer to krb5_cc_default_name() for a description of the search order).

The krb5_cc_default_name() and krb5_cc_set_default_name() routines are not thread-safe unless a
separate Kerberos context is used for each thread.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_cc_set_flags

Purpose
Sets processing flags for the credentials cache.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_cc_set_flags (

krb5_context context,
krb5_ccache ccache,
krb5_flags flags)

Parameters

Input
context

Specifies the Kerberos context.

ccache
Specifies the credentials cache handle.

flags
Specifies the flags. The allowable flags depend upon the cache type.

Kerberos APIs

48 V1R4.0 Network Authentication Service Programming

Usage
The krb5_cc_set_flags() routines sets the processing flags for a credentials cache. The interpretation of
the flags is dependent upon the cache type.

Thekrb5_cc_set_flags() routine is not supported by the MEMORY or XMEM cache types and returns an
error code of KRB5_CC_OP_NOT_SUPPORTED.

The FILE cache type supports just the KRB5_TC_OPENCLOSE flag. If this flag is specified, the
credentials cache file is opened each time a credentials cache routine is called and then closed before
returning to the caller (this is the default behavior if the krb5_cc_set_flags() routine is not called). If this
flag is not specified, the credentials cache file is opened and remains open until the credentials cache is
closed by the krb5_cc_close() or krb5_cc_destroy() routine. An exception is for the sequential read
routines. Regardless of the KRB5_TC_OPENCLOSE flag setting, the credentials cache file is opened
when the krb5_cc_start_seq_get() routine is called and remains open until the krb5_cc_end_seq_get()
routine is called

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_cc_start_seq_get

Purpose
Starts sequentially retrieving entries from the credentials cache.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_cc_start_seq_get (

krb5_context context,
krb5_ccache ccache,
krb5_cc_cursor * cursor)

Parameters

Input
context

Specifies the Kerberos context.

ccache
Specifies the credentials cache handle.

Output
cursor

Returns the cursor. The krb5_cc_end_seq_get() routine should be called to release the cursor at the
completion of the sequential read operation.

Usage
The krb5_cc_start_seq_get() routine prepares for sequentially reading entries in the credentials cache.
The krb5_cc_next_cred() routine is called repeatedly to retrieve each successive cache entry. The
krb5_cc_end_seq_get() routine is called at the completion of the read operation.

The credentials cache is locked when the krb5_cc_start_seq_get() routine is called and remains locked
until the krb5_cc_end_seq_get() routine is called. Write access to the cache by other processes and
threads isblocked until the cache is unlocked. After the krb5_cc_start_seq_get() routine has been called,
the current thread may not call any other credentials cache functions except krb5_cc_next_cred() and
krb5_cc_end_seq_get() for the specified cache.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 49

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_cc_store_cred

Purpose
Stores a new set of credentials in the cache.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_cc_store_cred (

krb5_context context,
krb5_ccache ccache,
krb5_creds * creds)

Parameters

Input
context

Specifies the Kerberos context.

ccache
Specifies the credentials cache handle.

creds
Specifies the Kerberos credentials.

Usage
The krb5_cc_store_cred() routine stores a new set of Kerberos credentials in the credentials cache.
Existing credentials for the same client/server pair are not removed, even if they are expired. Credentials
are stored first-in, first-out which means that newer credentials are retrieved after older credentials.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_change_password

Purpose
Changes the password for a principal.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_change_password (

krb5_context context,
krb5_creds * creds,
char * newpw,
int * result_code,
krb5_data * result_code_string,
krb5_data * result_string);

Parameters

Input
context

Specifies the Kerberos context.

Kerberos APIs

50 V1R4.0 Network Authentication Service Programming

creds
Specifies the credentials for the request. This must be an initial ticket to the kadmin/changepw
service for the principal whose password is to be changed.

newpw
Specifies the new password for the principal.

Output
result_code

Returns the result code for the change password request:

v 0 = password changed (KRB5_KPASSWD_SUCCESS)

v 1 = request packet incorrect (KRB5_KPASSWD_MALFORMED)

v 2 = password server error (KRB5_KPASSWD_HARDERROR)

v 3 = authentication error (KRB5_KPASSWD_AUTHERROR)

v 4 = password change rejected (KRB5_KPASSWD_SOFTERROR)

result_code_string
Returns the text description associated with the result code. Specify NULL for this parameter if the text
description is not needed. The text description should be released when it is no longer needed by
calling the krb5_free_string() function.

result_string
Returns any additional information provided by the password change server. Specify NULL for this
parameter if the additional information is not needed. The result string should be released when it is
no longer needed by calling the krb5_free_string() function.

Usage
The krb5_change_password() function changes the password for the principal identified by the supplied
credentials. The password change server applies any applicable password policy checks before changing
the password. The password change is rejected if the policy checks are not successful.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. The
password is not changed unless both the function return value and the result code are zero.

krb5_copy_address

Purpose
Copies a Kerberos address to a new structure.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_copy_address (

krb5_context context,
const krb5_address * from_addr,
krb5_address ** to_addr)

Parameters

Input
context

Specifies the Kerberos context.

from_address
Specifies the address to be copied.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 51

Output
to_address

Returns the new krb5_address structure. The krb5_free_address() routine should be called to
release the address when it is no longer needed.

Usage
The krb5_copy_address() routine makes a copy of a Kerberos address structure.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_copy_addresses

Purpose
Copies an array of Kerberos addresses.

Format
#include <skrb/krb5.h>

krb5_error_code krb5_copy_addresses (
krb5_context context,
krb5_address * const * from_addrs,
krb5_address *** to_addrs)

Parameters

Input
context

Specifies the Kerberos context.

from_addrs
Specifies the array of addresses to be copied. The last array entry must be a NULL pointer.

Output
to_addrs

Returns the new krb5_address array. The krb5_free_addresses() routine should be called to release
the address array when it is no longer needed.

Usage
The krb5_copy_addresses() routine makes a copy of an array of Kerberos address structures.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_copy_authdata

Purpose
Copies an array of authorization data structures.

Kerberos APIs

52 V1R4.0 Network Authentication Service Programming

Format
#include <skrb/krb5.h>
krb5_error_code krb5_copy_authdata (

krb5_context context,
krb5_authdata * const * from_authdata,
krb5_authdata *** to_authdata)

Parameters

Input
context

Specifies the Kerberos context.

from_authdata
Specifies the array of krb5_authdata structures. The last array entry must be a NULL pointer.

Output
to_authdata

Returns the new array of krb5_authdata structures. The krb5_free_authdata() routine should be
called to release the array when it is no longer needed.

Usage
The krb5_copy_authdata() routine copies an array of krb5_authdata structures.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_copy_authenticator

Purpose
Copies a Kerberos authenticator.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_copy_authenticator (

krb5_context context,
const krb5_authenticator * from_authent,
krb5_authenticator ** to_authent)

Parameters

Input
context

Specifies the Kerberos context.

from_authent
Specifies the authenticator to be copied.

Output
to_authent

Returns the copied authenticator. The krb5_free_authenticator() routine should be called to release
the authenticator when it is no longer needed.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 53

Usage
The krb5_copy_authenticator() routine copies a Kerberos authenticator.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_copy_checksum

Purpose
Copies a Kerberos checksum.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_copy_checksum (

krb5_context context,
const krb5_checksum * from_cksum,
krb5_checksum ** to_cksum)

Parameters

Input
context

Specifies the Kerberos context.

from_cksum
Specifies the checksum to be copied.

Output
to_cksum

Returns the copied checksum. The krb5_free_checksum() routine should be called to release the
checksum when it is no longer needed.

Usage
The krb5_copy_checksum() copies a Kerberos checksum.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_copy_creds

Purpose
Copies Kerberos credentials.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_copy_creds (

krb5_context context,
const krb5_creds * from_creds,
krb5_creds ** to_creds)

Kerberos APIs

54 V1R4.0 Network Authentication Service Programming

Parameters

Input
context

Specifies the Kerberos context.

from_creds
Specifies the credentials to be copied.

Output
to_creds

Returns the copied credentials. The krb5_free_creds() routine should be called to release the
credentials are no longer needed.

Usage
The krb5_copy_creds() routine copies Kerberos credentials.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_copy_data

Purpose
Copies a Kerberos data object.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_copy_data (

krb5_context context,
const krb5_data * from_data,
krb5_data ** to_data)

Parameters

Input
context

Specifies the Kerberos context.

from_data
Specifies the data object to be copied.

Output
to_data

Returns the copied data object. The krb5_free_data() routine should be called to release the data
object when it is no longer needed.

Usage
The krb5_copy_data() routine copies a Kerberos data object that is represented by a krb5_data
structure.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 55

krb5_copy_keyblock

Purpose
Copies a Kerberos keyblock.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_copy_keyblock (

krb5_context context,
const krb5_keyblock * from_keyblock,
krb5_keyblock ** to_keyblock)

Parameters

Input
context

Specifies the Kerberos context.

from_keyblock
Specifies the keyblock to be copied.

Output
to_keyblock

Returns the copied keyblock. The krb5_free_keyblock() routine should be called to release the
keyblock when it is no longer needed.

Usage
The krb5_copy_keyblock() routine copies a Kerberos keyblock.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_copy_keyblock_contents

Purpose
Copies the contents of a Kerberos keyblock.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_copy_keyblock_contents (

krb5_context context,
const krb5_keyblock * from_keyblock,
krb5_keyblock * to_keyblock)

Parameters

Input
context

Specifies the Kerberos context.

from_keyblock
Specifies the keyblock to be copied.

Kerberos APIs

56 V1R4.0 Network Authentication Service Programming

Output
to_keyblock

Returns the contents of the input keyblock. The krb5_free_keyblock_contents() routine should be
called to release the contents of the keyblock when it is no longer needed.

Usage
The krb5_copy_keyblock_contents() routine copies the contents of a Kerberos keyblock into an existing
keyblock. The current contents of the output keyblock are not released before performing the copy.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_copy_principal

Purpose
Copies a Kerberos principal.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_copy_principal (

krb5_context context,
krb5_const_principal from_princ,
krb5_principal * to_princ)

Parameters

Input
context

Specifies the Kerberos context.

from_princ
Specifies the principal to be copied.

Output
to_princ

Returns the copied principal. The krb5_free_principal() routine should be called to release the
principal when it is no longer needed.

Usage
The krb5_copy_principal() routine copies a Kerberos principal.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_copy_ticket

Purpose
Copies a Kerberos ticket.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 57

Format
#include <skrb/krb5.h>
krb5_error_code krb5_copy_ticket (

krb5_context context,
const krb5_ticket * from_ticket,
krb5_ticket ** to_ticket)

Parameters

Input
context

Specifies the Kerberos context.

from_ticket
Specifies the ticket to be copied.

Output
to_ticket

Returns the copied ticket. The krb5_free_ticket() routine should be called to release the ticket when it
is no longer needed.

Usage
The krb5_copy_ticket() routine copies a Kerberos ticket.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_dll_load

Purpose
Loads the Kerberos runtime library.

Format
#include <skrb/krbload.h>
int krb5_dll_load (

krb5_ui_4 * function_mask,
krb5_api_vector ** function_vector)

Parameters

Output
function_mask

Returns a bit mask indicating the functions available in the version of the Kerberos runtime.

function_vector
Returns the address of the DLL address vector.

Usage
The krb5_dll_load() routine dynamically loads the Kerberos runtime. This is an alternative to automatically
loading the Kerberos runtime during process initialization. In order to dynamically load the Kerberos DLL,
the application must not make direct calls to any function contained in the DLL nor make any direct
references to variables defined in the DLL. Instead, functions and variables must be accessed using the
addresses in the vector returned by the krb5_dll_load() routine.

Kerberos APIs

58 V1R4.0 Network Authentication Service Programming

The application can unload the DLL when it is no longer needed by calling the krb5_dll_unload() routine.
The DLL is automatically unloaded at process termination.

Multiple calls to krb5_dll_load() without an intervening call to krb5_dll_unload() cause the dynamic load
count to be incremented. The Kerberos runtime is not unloaded until the the load count is reduced to zero
by calling the krb5_dll_unload() routine once for each call to the krb5_dll_load() routine.

The function mask indicates the capabilities of the version of the Kerberos DLL currently loaded. The
following values have been defined:

v KRB5_API_LVL1 - Kerberos functions provided as part of z/OS Version 1 Release 2 are available

v KRB5_API_LVL2 - Kerberos functions provided as part of z/OS Version 1 Release 4 are available

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_dll_unload

Purpose
Unloads the Kerberos runtime library.

Format
#include <skrb/krbload.h>
int krb5_dll_unload (void)

Parameters

None

Usage
Each call to krb5_dll_load() increments the dynamic load count, and each call to krb5_dll_unload()
decrements the dynamic load count. The Kerberos runtime is terminated and the Kerberos DLL is
unloaded when the dynamic load count reaches 0. The DLL is not unloaded if it was loaded automatically
during process initialization, but the Kerberos runtime is still terminated when the dynamic load count
reaches 0.

Results are unpredictable if the Kerberos runtime is in use by another thread at the time the
krb5_dll_unload() routine is called. The application is responsible for closing or destroying open
credentials caches, replay caches, and key tables before unloading the Kerberos runtime.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_free_address

Purpose
Releases the storage assigned to a Kerberos address.

Format
#include <skrb/krb5.h>
void krb5_free_address (

krb5_context context,
krb5_address * addr)

Kerberos APIs

Chapter 2. Kerberos programming interfaces 59

|

Parameters

Input
context

Specifies the Kerberos context.

addr
Specifies the krb5_address to be released.

Usage
The krb5_free_address() routine releases the storage assigned to the contents of a krb5_address
structure and then it releases the krb5_address structure itself.

krb5_free_addresses

Purpose
Releases the storage assigned to an array of Kerberos addresses.

Format
#include <skrb/krb5.h>
void krb5_free_addresses (

krb5_context context,
krb5_address ** addrs)

Parameters

Input
context

Specifies the Kerberos context.

addrs
Specifies the array to be released. The last entry in the array must be a NULL pointer.

Usage
The krb5_free_addresses() routine releases the storage assigned to an array of krb5_address
structures. Each krb5_address structure is released and then the pointer array itself is released.

krb5_free_ap_rep_enc_part

Purpose
Releases the storage assigned to the decrypted portion of an AP_REP message.

Format
#include <skrb/krb5.h>
void krb5_free_ap_rep_enc_part (

krb5_context context,
krb5_ap_rep_enc_part * enc_part)

Kerberos APIs

60 V1R4.0 Network Authentication Service Programming

Parameters

Input
context

Specifies the Kerberos context.

enc_part
Specifies the reply to be released.

Usage
The krb5_free_ap_rep_enc_part() routine releases the storage assigned to the decrypted reply returned
by the krb5_rd_rep() routine.

krb5_free_authdata

Purpose
Releases the storage assigned to an array of authentication data.

Format
#include <skrb/krb5.h>
void krb5_free_authdata (

krb5_context context,
krb5_authdata ** authdata)

Parameters

Input
context

Specifies the Kerberos context.

authdata
Specifies the array to be released. The last entry in the array must be a NULL pointer.

Usage
The krb5_free_authdata() routine releases the storage assigned to an array of krb5_authdata structures.
Each krb5_authdata structure is released and then the pointer array itself is released.

krb5_free_authenticator

Purpose
Releases the storage assigned to an authenticator.

Format
#include <skrb/krb5.h>
void krb5_free_authenticator (

krb5_context context,
krb5_authenticator * authent)

Kerberos APIs

Chapter 2. Kerberos programming interfaces 61

Parameters

Input
context

Specifies the Kerberos context.

authent
Specifies the krb5_authenticator to be released.

Usage
The krb5_free_authenticator() routine releases the storage assigned to the contents of a
krb5_authenticator structure and then it releases the krb5_authenticator structure itself.

krb5_free_authenticator_contents

Purpose
Releases the storage assigned to the contents of an authenticator.

Format
#include <skrb/krb5.h>
void krb5_free_authenticator_contents (

krb5_context context,
krb5_authenticator * authent)

Parameters

Input
context

Specifies the Kerberos context.

authent
Specifies the krb5_authenticator to be released.

Usage
The krb5_free_authenticator_contents() routine releases the storage assigned to the contents of a
krb5_authenticator structure. Unlike the krb5_free_authenticator() routine, the
krb5_free_authenticator_contents() routine does not free the krb5_authenticator structure.

krb5_free_checksum

Purpose
Releases the storage assigned to a checksum.

Format
#include <skrb/krb5.h>
void krb5_free_checksum (

krb5_context context,
krb5_checksum * cksum)

Kerberos APIs

62 V1R4.0 Network Authentication Service Programming

Parameters

Input
context

Specifies the Kerberos context.

cksum
Specifies the krb5_checksum to be released.

Usage
The krb5_free_checksum() routine releases the storage assigned to a krb5_checksum structure and
then releases the krb5_checksum structure itself.

krb5_free_checksum_contents

Purpose
Releases the storage assigned to the contents of a checksum.

Format
#include <skrb/krb5.h>
void krb5_free_checksum_contents (

krb5_context context,
krb5_checksum * cksum)

Parameters

Input
context

Specifies the Kerberos context.

cksum
Specifies the krb5_checksum to be released.

Usage
The krb5_free_checksum_contents() routine releases the storage assigned to the contents of a
krb5_checksum structure. Unlike the krb5_free_checksum() routine, the krb5_checksum structure itself
is not released.

krb5_free_cksumtypes

Purpose
Release the storage assigned to the contents of a checksum.

Format
#include <skrb/krb5.h>
void krb5_free_cksumtypes (

krb5_context context,
krb5_cksumtype * cksumtypes)

Kerberos APIs

Chapter 2. Kerberos programming interfaces 63

Parameters

Input
context

Specifies the Kerberos context.

cksumtypes
Specifies the array of checksum types to be released.

Usage
The krb5_free_cksumtypes() routine releases storage assigned to an array of checksum types.

krb5_free_context

Purpose
Releases a Kerberos context.

Format
#include <skrb/krb5.h>
void krb5_free_context (

krb5_context context)

Parameters

Input
context

Specifies the Kerberos context.

Usage
The krb5_free_context() routine is used to release a context that was created by the krb5_init_context()
routine.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_free_cred_contents

Purpose
Releases the storage assigned to contents of a credential.

Format
#include <skrb/krb5.h>
void krb5_free_cred_contents (

krb5_context context,
krb5_creds * creds)

Parameters

Input
context

Specifies the Kerberos context.

Kerberos APIs

64 V1R4.0 Network Authentication Service Programming

creds
Specifies the credentials.

Usage
The krb5_free_cred_contents() routine releases the storage assigned to the contents of a krb5_creds
structure. Unlike the krb5_free_creds() routine, the krb5_free_cred_contents() routine does not release
the krb5_creds structure.

krb5_free_creds

Purpose
Releases the storage assigned to a credential.

Format
#include <skrb/krb5.h>
void krb5_free_creds (

krb5_context context,
krb5_creds * creds)

Parameters

Input
context

Specifies the Kerberos context.

creds
Specifies the credentials.

Usage
The krb5_free_creds() routine releases the storage assigned to the contents of a krb5_creds structure
and then releases the krb5_creds structure itself.

krb5_free_data

Purpose
Releases the storage assigned to a Kerberos data object.

Format
#include <skrb/krb5.h>
void krb5_free_data (

krb5_context context,
krb5_data * data)

Parameters

Input
context

Specifies the Kerberos context.

data
Specifies the data object.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 65

Usage
e krb5_free_data() routine releases the storage assigned to a Kerberos data object represented by a
krb5_data structure.

krb5_free_data_contents

Purpose
Release the storage assigned to the contents of a Kerberos data object.

Format
#include <skrb/krb5.h>
void krb5_free_data_contents (

krb5_context context,
krb5_data * data)

Parameters

Input
context

Specifies the Kerberos context.

data
Specifies the data object.

Usage
The krb5_free_data_contents() routine releases the storage assigned to the contents of a Kerberos data
object represented by a krb5_data structure. Unlike the krb5_free_data() routine, the
krb5_free_data_contents() routine does not release the krb5_data structure.

krb5_free_enc_tkt_part

Purpose
Releases the storage assigned to an encrypted ticket part.

Format
#include <skrb/krb5.h>
void krb5_free_enc_tkt_part (

krb5_context context,
krb5_enc_tkt_part * enc_tkt)

Parameters

Input
context

Specifies the Kerberos context.

enc_tkt
Specifies the krb5_enc_tkt_part structure to be released.

Kerberos APIs

66 V1R4.0 Network Authentication Service Programming

Usage
The krb5_free_enc_tkt_part() routine releases the storage assigned to the krb5_enc_tkt_part structure
and then releases the krb5_enc_tkt_part structure itself. The krb5_enc_tkt_part structure is created
when a ticket is decrypted and decoded.

krb5_free_enctypes

Purpose
Releases the storage assigned to an array of encryption types.

Format
#include <skrb/krb5.h>
void krb5_free_enctypes (

krb5_context context,
krb5_enctype * enctypes)

Parameters

Input
context

Specifies the Kerberos context.

enctypes
Specifies the array of encryption types to be released.

Usage
The krb5_free_enctypes() routine releases storage assigned to an array of encryption types.

krb5_free_error

Purpose
Releases the storage assigned to a Kerberos error message.

Format
#include <skrb/krb5.h>
void krb5_free_error (

krb5_context context,
krb5_error * error)

Parameters

Input
context

Specifies the Kerberos context.

error
Specifies the krb5_error structure to be released.

Usage
The krb5_free_error() routine releases the storage assigned to the krb5_error structure and then
releases the krb5_error structure itself. The krb5_error structure is created when a Kerberos error
message is processed by the krb5_rd_error() routine.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 67

krb5_free_host_realm

Purpose
Releases the storage assigned to a realm list.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_free_host_realm (

krb5_context context,
char * const * realm_list)

Parameters

Input
context

Specifies the Kerberos context.

realm_list
Specifies the realm list to be released.

Usage
The krb5_free_host_realm() routine releases the storage assigned to a realm list.

The function return value is always zero.

krb5_free_kdc_rep

Purpose
Releases the storage assigned to a KDC reply.

Format
#include <skrb/krb5.h>
void krb5_free_kdc_rep (

krb5_context context,
krb5_kdc_rep * reply)

Parameters

Input
context

Specifies the Kerberos context.

reply
Specifies the KDC reply to be released.

Usage
The krb5_free_kdc_rep() routine releases the contents of the krb5_kdc_rep structure and then it
releases the krb5_kdc_rep structure itself.

Kerberos APIs

68 V1R4.0 Network Authentication Service Programming

krb5_free_keyblock

Purpose
Releases the storage assigned to a keyblock.

Format
#include <skrb/krb5.h>
void krb5_free_keyblock (

krb5_context context,
krb5_keyblock * keyblock)

Parameters

Input
context

Specifies the Kerberos context.

keyblock
Specifies the keyblock to be released.

Usage
The krb5_free_keyblock() routine releases the contents of the krb5_keyblock structure and then it
releases the krb5_keyblock structure itself.

krb5_free_keyblock_contents

Purpose
Releases the storage assigned to the contents of a keyblock.

Format
#include <skrb/krb5.h>
void krb5_free_keyblock_contents (

krb5_context context,
krb5_keyblock * keyblock)

Parameters

Input
context

Specifies the Kerberos context.

keyblock
Specifies the keyblock to be released.

Usage
The krb5_free_keyblock_contents() routine releases the contents of the krb5_keyblock structure. Unlike
the krb5_free_keyblock() routine, the krb5_free_keyblock_contents() routine does not release the
krb5_keyblock structure.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 69

krb5_free_krbhst

Purpose
Releases the storage assigned to a host list.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_free_krbhst (

krb5_context context,
char * const * host_list)

Parameters

Input
context

Specifies the Kerberos context.

host_list
Specifies the host list to be released.

Usage
The krb5_free_krbhst() routine releases the storage assigned to a host list.

The function return value is always zero.

krb5_free_principal

Purpose
Releases the storage assigned to a principal.

Format
#include <skrb/krb5.h>
void krb5_free_principal (

krb5_context context,
krb5_principal principal)

Parameters

Input
context

Specifies the Kerberos context.

principal
Specifies the krb5_principal to be released.

Usage
The krb5_free_principal() routine releases storage assigned to a krb5_principal .

Kerberos APIs

70 V1R4.0 Network Authentication Service Programming

krb5_free_string

Purpose
Releases the storage assigned to a character string.

Format
#include <skrb/krb5.h>
void krb5_free_string (

krb5_context context,
char * string)

Parameters

Input
context

Specifies the Kerberos context.

string
Specifies the character string to be released.

Usage
The krb5_free_string() routine releases storage assigned to a character string.

krb5_free_tgt_creds

Purpose
Releases the storage assigned to an array of credentials.

Format
#include <skrb/krb5.h>
void krb5_free_tgt_creds (

krb5_context context,
krb5_creds ** creds)

Parameters

Input
context

Specifies the Kerberos context.

creds
Specifies the credentials array to be released. The last entry in the array must be a NULL pointer.

Usage
The krb5_free_tgt_creds() routine releases the storage assigned to an array of krb5_creds structures.
Each krb5_creds structure is released and then the pointer array itself is released.

krb5_free_ticket

Purpose
Releases the storage assigned to a ticket.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 71

Format
#include <skrb/krb5.h>
void krb5_free_ticket (

krb5_context context,
krb5_ticket * ticket)

Parameters

Input
context

Specifies the Kerberos context.

ticket
Specifies the krb5_ticket to be released.

Usage
The krb5_free_ticket() routine releases the storage assigned to a krb5_ticket structure and then releases
the krb5_ticket structure itself.

krb5_free_tickets

Purpose
Releases the storage assigned to an array of tickets.

Format
#include <skrb/krb5.h>
void krb5_free_tickets (

krb5_context context,
krb5_ticket ** tickets)

Parameters

Input
context

Specifies the Kerberos context.

tickets
Specifies the array to be released. The last entry in the array must be a NULL pointer.

Usage
The krb5_free_tickets() routine releases the storage assigned to an array of krb5_ticket structures. Each
krb5_ticket structure is released and then the pointer array itself is released.

krb5_gen_replay_name

Purpose
Generates a replay cache name.

Kerberos APIs

72 V1R4.0 Network Authentication Service Programming

Format
#include <skrb/krb5.h>
krb5_error_code krb5_gen_replay_name (

krb5_context context,
const krb5_address * inaddr,
const char * unique,
char ** string)

Parameters

Input
context

Specifies the Kerberos context.

inaddr
Specifies the address to be incorporated into the cache name.

unique
Specifies the unique portion of the replay cache name.

Output
string

Returns the generated replay cache name. This string should be freed by the application when it is no
longer needed.

Usage
The krb5_gen_replay_name() routine generates a unique replay cache name based on the Kerberos
address supplied by the caller. The unique parameter is used to differentiate this replay cache from others
currently in use on the system. The generated cache name consists of the unique portion concatenated
with the hexadecimal representation of the Kerberos address.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_generate_seq_number

Purpose
Generates a random sequence number.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_generate_seq_number (

krb5_context context,
const krb5_keyblock * key,
krb5_int32 * seqno)

Parameters

Input
context

Specifies the Kerberos context.

key
Specifies the key used to generate the random sequence number.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 73

Output
seqno

Returns the random sequence number.

Usage
The krb5_generate_seq_number() generates a random sequence number based upon the supplied key.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_generate_subkey

Purpose
Generates a subsession key.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_generate_subkey (

krb5_context context,
const krb5_keyblock * key,
krb5_keyblock ** subkey)

Parameters

Input
context

Specifies the Kerberos context.

key
Specifies the session key.

Output
subkey

Returns the generated subsession key. The krb5_free_keyblock() routine should be called to release
the key when it is no longer needed.

Usage
The krb5_generate_subkey() generates a random subsession key that is based on the supplied session
key.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_get_cred_from_kdc

Purpose
Obtains a service ticket from the Kerberos KDC server.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_get_cred_from_kdc (

krb5_context context,

Kerberos APIs

74 V1R4.0 Network Authentication Service Programming

krb5_ccache ccache,
krb5_creds * in_cred,
krb5_creds ** out_cred,
krb5_creds *** tgts)

Parameters

Input
context

Specifies the Kerberos context.

ccache
Specifies the credentials cache. The initial TGT for the local realm must already be in the cache. The
Kerberos runtime obtains additional ticket-granting tickets as needed if the target server is not in the
local realm.

in_cred
Specifies the request credentials. The client and server fields must be set to the desired values for the
service ticket. The second_ticket field must be set if the service ticket is to be encrypted in a session
key. The ticket expiration time can be set to override the default expiration time.

Output
out_cred

Returns the service ticket. The krb5_free_creds() routine should be called to release the credentials
when they are no longer needed.

tgts
Returns any new ticket-granting tickets that were obtained while getting the service target from the
KDC in the target realm. There may be ticket-granting tickets returned for this parameter even if the
Kerberos runtime was ultimately unable to obtain a service ticket from the target KDC. The
krb5_free_tgt_creds() routine should be called to release the TGT array when it is no longer needed.

Usage
The krb5_get_cred_from_kdc() routine obtains a service ticket from the Kerberos KDC server. The
credentials are not stored in the credentials cache (the application should store them in the cache if
appropriate). The application should not call krb5_get_cred_from_kdc() if the requested service ticket is
already in the credentials cache.

The krb5_get_cred_from_kdc() routine obtains any necessary ticket-granting tickets for intermediate
realms between the client realm and the server realm. It then calls the krb5_get_cred_via_tkt() routine to
obtain the actual service ticket. The KDC options are the same as the TGT ticket options. The
KDC_OPT_ENC_TKT_IN_SKEY flag is set if the in_cred parameter provided a second ticket.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_get_cred_from_kdc_renew

Purpose
Renews a service ticket obtained from the Kerberos KDC server.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_get_cred_from_kdc_renew (

krb5_context context,

Kerberos APIs

Chapter 2. Kerberos programming interfaces 75

krb5_ccache ccache,
krb5_creds * in_cred,
krb5_creds ** out_cred,
krb5_creds *** tgts)

Parameters

Input
context

Specifies the Kerberos context.

ccache
Specifies the credentials cache. The initial TGT for the local realm must already be in the cache. The
Kerberos runtime obtains additional ticket-granting tickets as needed if the target server is not in the
local realm.

in_cred
Specifies the request credentials. The client and server fields must be set to the desired values for the
service ticket. The second_ticket field must be set if the service ticket is to be encrypted in a session
key. The ticket expiration time can be set to override the default expiration time.

Output
out_cred

Returns the renewed service ticket. The krb5_free_creds() routine should be called to release the
credentials when they are no longer needed.

tgts
Returns any new ticket-granting tickets that were obtained while getting the service target from the
KDC in the target realm. There may be ticket-granting tickets returned for this parameter even if the
Kerberos runtime was ultimately unable to obtain a service ticket from the target KDC. The
krb5_free_tgt_creds() routine should be called to release the TGT array when it is no longer needed.

Usage
The krb5_get_cred_from_kdc_renew() routine renews a service ticket obtained from the Kerberos KDC
server. The credentials are not stored in the credentials cache (the application should store them in the
cache if appropriate). The application should call krb5_get_cred_from_kdc_renew() to renew a
renewable ticket before the ticket end time is reached. Note that a renewable ticket may not be renewed
after its end time even if its renew_till time has not been reached yet.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_get_cred_from_kdc_validate

Purpose
Validates a service ticket obtained from the Kerberos KDC server.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_get_cred_from_kdc_validate (

krb5_context context,
krb5_ccache ccache,
krb5_creds * in_cred,
krb5_creds ** out_cred,
krb5_creds *** tgts)

Kerberos APIs

76 V1R4.0 Network Authentication Service Programming

Parameters

Input
context

Specifies the Kerberos context.

ccache
Specifies the credentials cache. The initial TGT for the local realm must already be in the cache. The
Kerberos runtime obtains additional ticket-granting tickets as needed if the target server is not in the
local realm.

in_cred
Specifies the request credentials. The client and server fields must be set to the desired values for the
service ticket. The second_ticket field must be set if the service ticket is to be encrypted in a session
key. The ticket expiration time can be set to override the default expiration time.

Output
out_cred

Returns the validated service ticket. The krb5_free_creds() routine should be called to release the
credentials when they are no longer needed.

tgts
Returns any new ticket-granting tickets that were obtained while getting the service target from the
KDC in the target realm. There may be ticket-granting tickets returned for this parameter even if the
Kerberos runtime was ultimately unable to obtain a service ticket from the target KDC. The
krb5_free_tgt_creds() routine should be called to release the TGT array when it is no longer needed.

Usage
The krb5_get_cred_from_kdc_validate() routine validates a service ticket obtained from the Kerberos
KDC server. The credentials are not stored in the credentials cache (the application should store them in
the cache if appropriate). The application should call krb5_get_cred_from_kdc_validate() to validate a
postdated ticket after the ticket start time has been reached.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_get_cred_via_tkt

Purpose
Obtains a service ticket from the Kerberos KDC server.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_get_cred_via_tkt (

krb5_context context,
krb5_creds * tkt,
const krb5_flags kdc_options,
krb5_address * const * address
krb5_creds * in_cred,
krb5_creds ** out_cred)

Parameters

Input
context

Specifies the Kerberos context.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 77

tkt Specifies the ticket-granting ticket for the realm containing the target server for the service ticket. The
client in the TGT must be the same as the client in the request credentials.

kdc_options
Specifies KDC options for the service ticket as follows:

v KDC_OPT_FORWARDABLE - Obtain a forwardable ticket.

v KDC_OPT_PROXIABLE - Obtain a proxiable ticket.

v KDC_OPT_ALLOW_POSTDATE - Allow postdated tickets.

v KDC_OPT_RENEWABLE - Obtain a renewable ticket. The renew_till time must be set in the
request.

v KDC_OPT_RENEWABLE_OK - A renewable ticket is acceptable if the KDC policy does not allow a
ticket to be generated with the requested endtime.

v KDC_OPT_ENC_TKT_IN_SKEY - Encrypt the service ticket in the session key of the second ticket.

address
Specifies the addresses to be placed in the ticket. The ticket addresses determine which host systems
can generate requests that use the ticket. A mapped IPv6 address is stored in the ticket as the
corresponding IPv4 address.

in_cred
Specifies the request credentials. The client and server fields must be set to the desired values for the
service ticket. The second_ticket field must be set if the service ticket is to be encrypted in a session
key. The ticket expiration time can be set to override the default expiration time.

Output
out_cred

Returns the service ticket. The krb5_free_creds() routine should be called to release the credentials
when they are no longer needed.

Usage
The krb5_get_cred_via_tkt() routine uses the supplied ticket-granting ticket to obtain a service ticket to
the requested server for the requested client.

If the request is for a ticket-granting ticket (TGT) in a foreign realm, the KDC may return a TGT for an
intermediate realm if it is unable to return a TGT for the requested realm. The application should check the
server name in the returned TGT. If the TGT is not for the desired realm, the application should call
krb5_get_cred_via_tkt() again to send the request to the KDC for the realm in the returned TGT and
should provide the TGT as the credentials for the request.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_get_credentials

Purpose
Obtains a service ticket.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_get_credentials (

krb5_context context,
const krb5_flags options,
krb5_ccache ccache,
krb5_creds * in_cred,
krb5_creds ** out_cred)

Kerberos APIs

78 V1R4.0 Network Authentication Service Programming

|
|
|
|

Parameters

Input
context

Specifies the Kerberos context.

options
Specifies the option flags as follows:

v KRB5_GC_USER_USER - Obtain a user-to-user ticket.

v KRB5_GC_CACHED - Do not obtain a service ticket if one is not found in the credentials cache.

ccache
Specifies the credentials cache to be used. The initial TGT must already be in the cache.

in_cred
Specifies the request credentials. The client and server fields must be set to the desired values for the
service ticket. The second_ticket field must be set if the service ticket is to be encrypted in a session
key. The ticket expiration time can be set to override the default expiration time. The key encryption
type can be set to override the default ticket encryption type.

Output
out_cred

Returns the service ticket. The krb5_free_creds() routine should be called to release the credentials
when they are no longer needed.

Usage
The krb5_get_credentials() routine obtains a service ticket for the requested server. This routine is the
normal way for an application to obtain a service ticket. If the service ticket is already in the credentials
cache, the krb5_get_credentials() routine returns the cached ticket. Otherwise, the
krb5_get_credentials() routine calls the krb5_get_cred_from_kdc() routine to obtain a service ticket from
the KDC.

The krb5_get_credentials() routine stores any tickets obtained during its processing in the credentials
cache. This includes the requested service ticket as well as any ticket-granting tickets required to obtain
the service ticket.

If KRB5_GC_CACHED is specified, the krb5_get_credentials() routine searches only the credentials
cache for a service ticket.

If KRB5_GC_USER_USER is specified, the krb5_get_credentials() routine gets credentials for
user-to-user authentication. In user-to-user authentication, the secret key for the server is the session key
from the server’s ticket-granting ticket (TGT). The TGT is passed from the server to the client over the
network (this is safe since the TGT is encrypted in a key known only by the Kerberos server). The client
must then pass this TGT to krb5_get_credentials() as the second ticket in the request credentials. The
Kerberos server uses this TGT to construct a user-to-user ticket that can be verified by the server using
the session key from its TGT.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_get_credentials_renew

Purpose
Renews a ticket.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 79

Format
#include <skrb/krb5.h>
krb5_error_code krb5_get_credentials_renew (

krb5_context context,
const krb5_flags options,
krb5_ccache ccache,
krb5_creds * in_cred,
krb5_creds ** out_cred)

Parameters

Input
context

Specifies the Kerberos context.

options
Specifies the option flags as follows:

v KRB5_GC_USER_USER - Obtain a user-to-user ticket.

ccache
Specifies the credentials cache to be used.

in_cred
Specifies the request credentials. The client and server fields must be set to the desired values for the
service ticket. The second_ticket field must be set if the service ticket is to be encrypted in a session
key. The ticket expiration time can be set to override the default expiration time.

Output
out_cred

Returns the service ticket. The krb5_free_creds() routine should be called to release the credentials
when they are no longer needed.

Usage
The krb5_get_credentials_renew() routine renews a service ticket for the requested service. Upon
successful completion, the credentials cache is re-initialized and the service ticket is stored in the cache.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_get_credentials_validate

Purpose
Validates a ticket.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_get_credentials_validate (

krb5_context context,
const krb5_flags options,
krb5_ccache ccache,
krb5_creds * in_cred,
krb5_creds ** out_cred)

Kerberos APIs

80 V1R4.0 Network Authentication Service Programming

Parameters

Input
context

Specifies the Kerberos context.

options
Specifies the option flags as follows:

v KRB5_GC_USER_USER - Obtain a user-to-user ticket.

ccache
Specifies the credentials cache to be used.

in_cred
Specifies the request credentials. The client and server fields must be set to the desired values for the
service ticket. The second_ticket field must be set if the service ticket is to be encrypted in a session
key. The ticket expiration time can be set to override the default expiration time.

Output
out_cred

Returns the service ticket. The krb5_free_creds() routine should be called to release the credentials
when they are no longer needed.

Usage
The krb5_get_credentials_validate() routine validates a service ticket for the requested service. Upon
successful completion, the credentials cache is re-initialized and the service ticket is stored in the cache.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_get_default_in_tkt_ktypes

Purpose
Returns the default encryption types that are used when requesting an initial ticket from the KDC.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_get_default_in_tkt_ktypes (

krb5_context context,
krb5_enctype ** ktypes)

Parameters

Input
context

Specifies the Kerberos context.

Output
ktypes

Returns an array of encryption types. The last entry in the array is ENCTYPE_NULL. The caller is
responsible for freeing the array returned for this parameter, when it is no longer needed, by calling
the krb5_free_enctypes() routine.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 81

Usage
The krb5_get_default_in_tkt_ktypes() routine returns the default encryption types that are used when
requesting the initial ticket from the KDC. The values are set by the krb5_set_default_in_tkt_ktypes()
routine or obtained from the Kerberos configuration file.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_get_default_realm

Purpose
Returns the default realm for the local system.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_get_default_realm (

krb5_context context,
char ** realm)

Parameters

Input
context

Specifies the Kerberos context.

Output
realm

Returns the realm name. The application should free the name when it is no longer needed by calling
the krb5_free_string() routine.

Usage
The krb5_get_default_realm() routine returns the default realm for the local system. The default realm is
set by the krb5_set_default_realm() routine. If the default realm has not been set, it is obtained from the
default_realm entry in the [libdefaults] section of the Kerberos configuration file.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_get_default_tgs_ktypes

Purpose
Returns the default encryption types that are used when requesting a service ticket from the KDC.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_get_default_tgs_ktypes (

krb5_context context,
krb5_enctype ** ktypes)

Kerberos APIs

82 V1R4.0 Network Authentication Service Programming

Parameters

Input
context

Specifies the Kerberos context.

Output
ktypes

Returns an array of encryption types. The last entry in the array is ENCTYPE_NULL. The caller is
responsible for freeing the array returned for this parameter, when it is no longer needed, by calling
the krb5_free_enctypes() routine.

Usage
The krb5_get_default_tgs_ktypes() routine returns the default encryption types that are used when
requesting a service ticket from the KDC. The values are set by the krb5_set_default_tgs_ktypes()
routine or obtained from the Kerberos configuration file.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_get_host_realm

Purpose
Gets the Kerberos realm name for a host name.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_get_host_realm (

krb5_context context,
const char * host,
char *** realm_list)

Parameters

Input
context

Specifies the Kerberos context.

host
Specifies the host name. The local host name is used if NULL is specified for this parameter.

Output
realm_list

Returns an array of realm names. The last entry in the array is a NULL pointer. The
krb5_free_host_realm() routine should be called to release the realm list when it is no longer needed.

Usage
The krb5_get_host_realm() routine returns a list of Kerberos realm names for the specified host name.
The entries in the [domain_realm] section of the Kerberos configuration file are used. A direct match takes
precedence over a suffix match. The current implementation of this routine returns a single realm name. If
no realm name is found, the uppercased host domain is returned as the realm name.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 83

krb5_get_in_tkt_system

Purpose
Gets an initial ticket from the local KDC using the current system identity.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_get_in_tkt_system (

krb5_context context,
const krb5_flags options,
krb5_address * const * addrs,
krb5_enctype * enctypes,
krb5_ccache ccache,
krb5_creds * creds,
krb5_kdc_rep ** ret_as_reply)

Parameters

Input
context

Specifies the Kerberos context.

options
Specifies KDC options as follows:

v KDC_OPT_FORWARDABLE - Obtain a forwardable ticket.

v KDC_OPT_PROXIABLE - Obtain a proxiable ticket.

v KDC_OPT_ALLOW_POSTDATE - Allow postdated tickets.

v KDC_OPT_RENEWABLE - Obtain a renewable ticket. The renew_till time must be set in the
request.

v KDC_OPT_RENEWABLE_OK - A renewable ticket is acceptable if the KDC policy does not allow a
ticket to be generated with the requested endtime.

addrs
Specifies the addresses to be placed in the ticket. If NULL is specified for this parameter, the local
system addresses are used. The address list is an array of krb5_address pointers. The end of the
array is indicated by a NULL pointer. No addresses are included in the initial ticket if the address array
consists of a single NULL entry. The ticket addresses determine which host systems can generate
requests that use the ticket. A mapped IPv6 address is stored in the ticket as the corresponding IPv4
address.

enctypes
Specifies an array of encryption types to be used. The last entry in the array must be
ENCTYPE_NULL. If NULL is specified for this parameter, the default encryption types are used. The
following encryption types may be specified:

v ENCTYPE_DES_CBC_CRC - 32-bit CRC checksum with DES encryption. This encryption type
should be used for interoperability with older levels of Kerberos V5.

v ENCTYPE_DES_CBC_MD5 - MD5 checksum with DES encryption.

v ENCTYPE_DES_CBC_MD4 - MD4 checksum with DES encryption

v ENCTYPE_DES_HMAC_SHA1 - SHA1 checksum with DES encryption and key derivation

v ENCTYPE_DES3_CBC_SHA1 - SHA1 checksum with DES3 encryption and key derivation

Kerberos APIs

84 V1R4.0 Network Authentication Service Programming

|
|
|
|
|
|
|

Input/Output
ccache

Specifies the credentials cache handle. The credentials cache is initialized with the client name and
the initial ticket is stored in the credentials cache for later use by the application. The credentials isl
not stored if NULL is specified for this parameter.

creds
Specifies attributes for the initial ticket. The server field must be set to the desired TGS service
principal. The endtime field may be set to explicitly specify the ticket lifetime or it may be set to zero to
use the default ticket lifetime. The renew_till field must be set if a renewable ticket is being requested.
The starttime field must be set if a postdated ticket is being requested.

Upon completion of the request, creds is updated with the client name, the initial ticket, the session
key, and the client address list. The krb5_free_cred_contents() or krb5_free_creds() routine should
be called to release the credentials when they are no longer needed.

Output
ret_as_reply

Returns the KDC reply. Specify NULL for this parameter if the KDC reply is not needed. The
krb5_free_kdc_rep() routine should be called to release the reply when it is no longer needed.

Usage
The krb5_get_in_tkt_system() routine is called to obtain an initial ticket for the Kerberos principal
associated with the current system identity. This initial ticket can then be used to obtain service tickets.
The client must be in the same realm as the KDC in order to be able to obtain an initial ticket from the
KDC. The initial ticket can be used to obtain tickets in the same realm or in different realms as long as the
proper inter-realm trust relationships have been established.

As a general rule, the application should not specify the encryption types. This allows the encryption type
to be determined by the Kerberos configuration profile.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

The Kerberos security server must be running on the local system in order to use this function. Otherwise,
the function return value is set to KRB5_KDC_UNREACH.

krb5_get_in_tkt_with_keytab

Purpose
Gets an initial ticket using a key table.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_get_in_tkt_with_keytab (

krb5_context context,
const krb5_flags options,
krb5_address * const * addrs,
krb5_enctype * enctypes,
krb5_preauthtype * pre_auth_types,
const krb5_keytab keytab,
krb5_ccache ccache,
krb5_creds * creds,
krb5_kdc_rep ** ret_as_reply)

Kerberos APIs

Chapter 2. Kerberos programming interfaces 85

Parameters

Input
context

Specifies the Kerberos context.

options
Specifies KDC options as follows:

v KDC_OPT_FORWARDABLE - Obtain a forwardable ticket.

v KDC_OPT_PROXIABLE - Obtain a proxiable ticket.

v KDC_OPT_ALLOW_POSTDATE - Allow postdated tickets.

v KDC_OPT_RENEWABLE - Obtain a renewable ticket. The renew_till time must be set in the
request.

v KDC_OPT_RENEWABLE_OK - A renewable ticket is acceptable if the KDC policy does not allow a
ticket to be generated with the requested endtime.

addrs
Specifies the addresses to be placed in the ticket. If NULL is specified for this parameter, the local
system addresses are used. The address list is an array of krb5_address pointers. The end of the
array is indicated by a NULL pointer. No addresses are included in the initial ticket if the address array
consists of a single NULL entry. The ticket addresses determine which host systems can generate
requests that use the ticket. A mapped IPv6 address is stored in the ticket as the corresponding IPv4
address.

enctypes
Specifies an array of encryption types to be used. The last entry in the array must be
ENCTYPE_NULL. If NULL is specified for this parameter, the default encryption types is used. The
following encryption types may be specified:

v ENCTYPE_DES_CBC_CRC - 32-bit CRC checksum with DES encryption. This encryption type
should be used for interoperability with older levels of Kerberos V5.

v ENCTYPE_DES_CBC_MD5 - MD5 checksum with DES encryption.

v ENCTYPE_DES_CBC_MD4 - MD4 checksum with DES encryption

v ENCTYPE_DES_HMAC_SHA1 - SHA1 checksum with DES encryption and key derivation

v ENCTYPE_DES3_CBC_SHA1 - SHA1 checksum with DES3 encryption and key derivation

pre_auth_types
Specifies an array of preauthentication types to be used. The last entry in the array must be
KRB5_PADATA_NONE. If NULL is specified for this parameter, no preauthentication is done unless
required by KDC policy (in which case the KDC provides the preauthentication types). If multiple
preauthentication types are specified, the KDC is supposed to accept the request as long as it
recognizes at least one of the preauthentication types. Unfortunately, early implementations of the
KDC did not follow this rule and fail the request if the first preauthentication type is not recognized.
The following preauthentication types may be specified:

v KRB5_PADATA_ENC_TIMESTAMP - Encrypted timestamp preauthentication.

keytab
Specifies the key table containing the key for the client principal. The entry with the highest key
version number is used. The default key table is used if NULL is specified for this parameter.

Input/Output
ccache

Specifies the credentials cache handle. The initial ticket is stored in the credentials cache for later use
by the application. The credentials is not stored if NULL is specified for this parameter.

Kerberos APIs

86 V1R4.0 Network Authentication Service Programming

|
|
|
|
|
|
|

creds
Specifies the credentials that are used to obtain the initial ticket. The client and server fields must be
set. The endtime field may be set to explicitly specify the ticket lifetime or it may be set to zero to use
the default ticket lifetime. The renew_till field must be set if a renewable ticket is being requested. The
starttime field must be set if a postdated ticket is being requested.

Upon completion of the request, creds is updated with the initial ticket, the session key, and the client
address list. The krb5_free_cred_contents() or krb5_free_creds() routine should be called to release
the credentials when they are no longer needed.

Output
ret_as_reply

Returns the KDC reply. Specify NULL for this parameter if the KDC reply is not needed. The
krb5_free_kdc_rep() routine should be called to release the reply when it is no longer needed

Usage
The krb5_get_in_tkt_with_keytab() routine is called to obtain an initial ticket using a key table. This initial
ticket can then be used to obtain service tickets. The client must be in the same realm as the KDC in
order to obtain an initial ticket from the KDC. The initial ticket can be used to obtain tickets in the same
realm or in different realms as long as the proper inter-realm trust relationships have been established.

As a general rule, the application should not specify encryption or preauthentication types. This allows the
encryption type to be determined by the Kerberos configuration profile and the preauthentication type to be
determined by the KDC policy.

The first encryption type specified (either explicitly or through the Kerberos configuration profile) is used for
preauthentication types that require an encryption key. If the KDC returns a list of encryption types, the
first supported encryption type is used for preauthentication data.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_get_in_tkt_with_password

Purpose
Gets an initial ticket using a text password.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_get_in_tkt_with_password (

krb5_context context,
const krb5_flags options,
krb5_address * const * addrs,
krb5_enctype * enctypes,
krb5_preauthtype * pre_auth_types,
const char * password,
krb5_ccache ccache,
krb5_creds * creds,
krb5_kdc_rep ** ret_as_reply)

Parameters

Input
context

Specifies the Kerberos context.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 87

options
Specifies KDC options as follows:

v KDC_OPT_FORWARDABLE - Obtain a forwardable ticket.

v KDC_OPT_PROXIABLE - Obtain a proxiable ticket

v KDC_OPT_ALLOW_POSTDATE - Allow postdated tickets.

v KDC_OPT_RENEWABLE - Obtain a renewable ticket. The renew_till time must be set in the
request.

v KDC_OPT_RENEWABLE_OK - A renewable ticket is acceptable if the KDC policy does not allow a
ticket to be generated with the requested endtime.

addrs
Specifies the addresses to be placed in the ticket. If NULL is specified for this parameter, the local
system addresses are used. The address list is an array of krb5_address pointers. The end of the
array is indicated by a NULL pointer. No addresses are included in the initial ticket if the address array
consists of a single NULL entry. The ticket addresses determine which host systems can generate
requests that use the ticket. A mapped IPv6 address is stored in the ticket as the corresponding IPv4
address.

enctypes
Specifies an array of encryption types to be used. The last entry in the array must be
ENCTYPE_NULL. If NULL is specified for this parameter, the default encryption types is used. The
following encryption types may be specified:

v ENCTYPE_DES_CBC_CRC - 32-bit CRC checksum with DES encryption. This encryption type
should be used for interoperability with older levels of Kerberos V5.

v ENCTYPE_DES_CBC_MD5 - MD5 checksum with DES encryption.

v ENCTYPE_DES_CBC_MD4 - MD4 checksum with DES encryption

v ENCTYPE_DES_HMAC_SHA1 - SHA1 checksum with DES encryption and key derivation

v ENCTYPE_DES3_CBC_SHA1 - SHA1 checksum with DES3 encryption and key derivation

pre_auth_types
Specifies an array of preauthentication types to be used. The last entry in the array must be
KRB5_PADATA_NONE. If NULL is specified for this parameter, no preauthentication is done unless
required by KDC policy (in which case the KDC provides the preauthentication types). If multiple
preauthentication types are specified, the KDC is supposed to accept the request as long as it
recognizes at least one of the preauthentication types. Unfortunately, early implementations of the
KDC did not follow this rule and fail the request if the first preauthentication type is not recognized.
The following preauthentication types may be specified:

v KRB5_PADATA_ENC_TIMESTAMP - Encrypted timestamp preauthentication.

password
Specifies the password string. This string is converted to a Kerberos key value using the rules for the
first encryption type specified by the enctypes parameter. The user is prompted to enter the password
if NULL is specified for this parameter.

Input/Output
ccache

Specifies the credentials cache handle. The initial ticket is stored in the credentials cache for later use
by the application. The credentials are not stored if NULL is specified for this parameter.

creds
Specifies the credentials that are used to obtain the initial ticket. The client and server fields must be
set. The endtime field may be set to explicitly specify the ticket lifetime or it may be set to zero to use
the default ticket lifetime. The renew_till field must be set if a renewable ticket is being requested. The
starttime field must be set if a postdated ticket is being requested.

Kerberos APIs

88 V1R4.0 Network Authentication Service Programming

|
|
|
|
|
|
|

Upon completion of the request, creds is updated with the initial ticket, the session key, and the client
address list. The krb5_free_cred_contents() or krb5_free_creds() routine should be called to release
the credentials when they are no longer needed.

Output
ret_as_reply

Returns the KDC reply. Specify NULL for this parameter if the KDC reply is not needed. The
krb5_free_kdc_rep() routine should be called to release the reply when it is no longer needed.

Usage
The krb5_get_in_tkt_with_password() routine is called to obtain an initial ticket using a text password.
This initial ticket can then be used to obtain service tickets. The client must be in the same realm as the
KDC in order to obtain an initial ticket from the KDC. The initial ticket can be used to obtain tickets in the
same realm or in different realms as long as the proper inter-realm trust relationships have been
established.

As a general rule, the application should not specify encryption or preauthentication types. This allows the
encryption type to be determined by the Kerberos configuration profile and the preauthentication type to be
determined by the KDC policy.

The first encryption type specified (either explicitly or through the Kerberos configuration profile) is used for
preauthentication types that require an encryption key. If the KDC returns a list of encryption types, the
first supported encryption type is used for preauthentication data.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_get_in_tkt_with_skey

Purpose
Gets an initial ticket using a session key.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_get_in_tkt_with_skey (

krb5_context context,
const krb5_flags options,
krb5_address * const * addrs,
krb5_enctype * enctypes,
krb5_preauthtype * pre_auth_types,
const krb5_keyblock * key,
krb5_ccache ccache,
krb5_creds * creds,
krb5_kdc_rep ** ret_as_reply)

Parameters

Input
context

Specifies the Kerberos context.

options
Specifies KDC options as follows:

v KDC_OPT_FORWARDABLE - Obtain a forwardable ticket.

v KDC_OPT_PROXIABLE - Obtain a proxiable ticket.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 89

v KDC_OPT_ALLOW_POSTDATE - Allow postdated tickets.

v KDC_OPT_RENEWABLE - Obtain a renewable ticket. The renew_till time must be set in the
request.

v KDC_OPT_RENEWABLE_OK - A renewable ticket is acceptable if the KDC policy does not allow a
ticket to be generated with the requested endtime.

addrs
Specifies the addresses to be placed in the ticket. If NULL is specified for this parameter, the local
system addresses are used. The address list is an array of krb5_address pointers. The end of the
array is indicated by a NULL pointer. No addresses are included in the initial ticket if the address array
consists of a single NULL entry. The ticket addresses determine which host systems can generate
requests that use the ticket. A mapped IPv6 address is stored in the ticket as the corresponding IPv4
address.

enctypes
Specifies an array of encryption types to be used. The last entry in the array must be
ENCTYPE_NULL. If NULL is specified for this parameter, the default encryption types is used. The
following encryption types may be specified:

v ENCTYPE_DES_CBC_CRC - 32-bit CRC checksum with DES encryption. This encryption type
should be used for interoperability with older levels of Kerberos V5.

v ENCTYPE_DES_CBC_MD5 - MD5 checksum with DES encryption.

v ENCTYPE_DES_CBC_MD4 - MD4 checksum with DES encryption

v ENCTYPE_DES_HMAC_SHA1 - SHA1 checksum with DES encryption and key derivation

v ENCTYPE_DES3_CBC_SHA1 - SHA1 checksum with DES3 encryption and key derivation

pre_auth_types
Specifies an array of preauthentication types to be used. The last entry in the array must be
KRB5_PADATA_NONE. If NULL is specified for this parameter, no preauthentication is done unless
required by KDC policy (in which case the KDC provides the preauthentication types). If multiple
preauthentication types are specified, the KDC is supposed to accept the request as long as it
recognizes at least one of the preauthentication types. Unfortunately, early implementations of the
KDC did not follow this rule and fail the request if the first preauthentication type is not recognized.
The following preauthentication types may be specified:

v KRB5_PADATA_ENC_TIMESTAMP - Encrypted timestamp preauthentication.

key
Specifies the key to be used. The default key table is used if NULL is specified for this parameter. The
key must be the current encryption key for the client principal.

Input/Output
ccache

Specifies the credentials cache handle. The initial ticket is stored in the credentials cache for later use
by the application. The credentials are not stored if NULL is specified for this parameter.

creds
Specifies the credentials that are used to obtain the initial ticket. The client and server fields must be
set. The endtime field may be set to explicitly specify the ticket lifetime or it may be set to zero to use
the default ticket lifetime. The renew_till field must be set if a renewable ticket is being requested. The
starttime field must be set if a postdated ticket is being requested.

Upon completion of the request, creds is updated with the initial ticket, the session key, and the client
address list. The krb5_free_cred_contents() or krb5_free_creds() routine should be called to release
the credentials when they are no longer needed.

Kerberos APIs

90 V1R4.0 Network Authentication Service Programming

|
|
|
|
|
|
|

Output
ret_as_reply

Returns the KDC reply. Specify NULL for this parameter if the KDC reply is not needed. The
krb5_free_kdc_rep() routine should be called to release the reply when it is no longer needed.

Usage
The krb5_get_in_tkt_with_skey() routine is called to obtain an initial ticket using a session key. This
initial ticket can then be used to obtain service tickets. The client must be in the same realm as the KDC
in order to obtain an initial ticket from the KDC. The initial ticket can be used to obtain tickets in the same
realm or in different realms as long as the proper inter-realm trust relationships have been established.

As a general rule, the application should not specify encryption or preauthentication types. This allows the
encryption type to be determined by the Kerberos configuration profile and the preauthentication type to be
determined by the KDC policy.

The first encryption type specified (either explicitly or through the Kerberos configuration profile) is used for
preauthentication types that require an encryption key. If the KDC returns a list of encryption types, the
first supported encryption type is used for preauthentication data.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_get_krbhst

Purpose
Returns a list of KDC hosts for a Kerberos realm.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_get_krbhst (

krb5_context context,
const krb5_data * realm,
char *** hostlist)

Parameters

Input
context

Specifies the Kerberos context.

realm
Specifies the Kerberos realm.

Output
hostlist

Returns the KDC host list. The last entry in the list is a NULL pointer. The krb5_free_krbhst() routine
should be called to release the host list when it is no longer needed.

Usage
The krb5_get_krbhst() routine returns a list of hosts in the specified realm that are running Kerberos KDC
servers. The list is obtained from the Lightweight Directory Access Protocol (LDAP) directory, the domain
name service (DNS) name server, or the [realms] section of the Kerberos configuration file.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 91

krb5_get_server_rcache

Purpose
Generates a replay cache for server use.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_get_server_rcache (

krb5_context context,
const krb5_data * piece,
krb5_rcache * ret_rcache)

Parameters

Input
context

Specifies the Kerberos context.

piece
Specifies the unique portion of the replay cache name.

Output
ret_rcache

Returns the replay cache handle. The krb5_rc_close() routine should be called to close the replay
cache when it is no longer needed.

Usage
The krb5_get_server_rcache() routine generates a unique replay cache name and then opens the replay
cache. The piece parameter is used to differentiate this replay cache from others currently in use on the
system by the same user. The generated cache name is in the form rc_piece_uid and uses the default
replay cache type.

The replay cache is initialized if it can not be recovered. The clock skew value is obtained from the
Kerberos context if it is necessary to initialize the cache.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_init_context

Purpose
Creates a Kerberos context.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_init_context (

krb5_context * context)

Parameters

Output
context

Specifies the Kerberos context.

Kerberos APIs

92 V1R4.0 Network Authentication Service Programming

Usage
The krb5_init_context() routine creates a new Kerberos context and initializes it with default values
obtained from the Kerberos configuration file. Each applications needs at least one Kerberos context. A
context may be shared by multiple threads within the same process. Use the krb5_free_context() routine
to release the context when it is no longer needed.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_kt_add_entry

Purpose
Adds a new entry to a key table.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_kt_add_entry (

krb5_context context,
krb5_keytab ktid,
krb5_keytab_entry * entry)

Parameters

Input
context

Specifies the Kerberos context.

ktid
Specifies the key table handle.

entry
Specifies the entry to be added to the key table. The application is responsible for setting the principal,
vno, and key fields in the entry. The krb5_kt_add_entry() routine sets the timestamp field to the
current time.

Usage
The krb5_kt_add_entry() routine adds a new entry to a key table. No checking is done for duplicate
entries. The key table type must support write operations.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

It is not necessary to add multiple entries to the key table for keys that use the same key generation
algorithm. For example, encryption types ENCTYPE_DES_CBC_CRC and ENCTYPE_DES_CBC_MD5
both generate a 56-bit DES key using the same algorithm. So it is necessary to store just a single entry in
the key table specifying one of these encryption types. The krb5_kt_get_entry() routine then returns this
key table entry when either of these encryption types is specified.

krb5_kt_close

Purpose
Closes a key table.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 93

Format
#include <skrb/krb5.h>
krb5_error_code krb5_kt_close (

krb5_context context,
krb5_keytab ktid)

Parameters

Input
context

Specifies the Kerberos context.

ktid
Specifies the key table handle.

Usage
The krb5_kt_close() routine closes a key table. The key table handle may not be used once this routine
completes.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_kt_default

Purpose
Resolves the default key table.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_kt_default (

krb5_context context,
krb5_keytab * ktid)

Parameters

Input
context

Specifies the Kerberos context.

Output
ktid

Returns the key table handle.

Usage
The krb5_kt_default() routine resolves the default key table and returns a handle that can be used to
access the table. This is equivalent to calling the krb5_kt_resolve() routine with the name returned by the
krb5_kt_default_name() routine.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

Kerberos APIs

94 V1R4.0 Network Authentication Service Programming

krb5_kt_default_name

Purpose
Returns the default key table name.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_kt_default_name (

krb5_context context,
char * name,
int name_size)

Parameters

Input
context

Specifies the Kerberos context.

name_size
Specifies the size of the buffer pointed to by the name parameter. The size must be large enough to
contain the key table name and the trailing delimiter. One way to do this is to allocate the buffer to be
MAX_KEYTAB_NAME_LENGTH+1 bytes.

Output
name

Returns the key table name.

Usage
The krb5_kt_default_name() routine returns the name of the default key table for the current user. If the
KRB5_KTNAME environment variable is set, this is the name of the default key table. Otherwise, the key
table name is obtained from the default_keytab_name entry in the [libdefaults] section of the Kerberos
configuration file. If this entry is not defined, the default key table name is /etc/skrb/krb5.keytab .

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_kt_end_seq_get

Purpose
Ends the sequential reading of the key table.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_kt_end_seq_get (

krb5_context context,
krb5_keytab ktid,
krb5_kt_cursor * cursor)

Parameters

Input
context

Specifies the Kerberos context.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 95

ktid
Specifies the key table handle.

Input/Output
cursor

Specifies the cursor created by the krb5_kt_start_seq_get() routine.

Usage
The krb5_kt_end_seq_get() routine unlocks the key table and releases the cursor. The cursor may not be
used once krb5_kt_end_seq_get() has completed.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_kt_free_entry

Purpose
Releases the storage assigned to a key table entry.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_kt_free_entry (

krb5_context context,
krb5_keytab_entry * entry)

Parameters

Input
context

Specifies the Kerberos context.

entry
Specifies the key table entry.

Usage
The krb5_kt_free_entry() routine releases the contents of a key table entry. It does not free the
krb5_keytab_entry structure itself.

The function return value is always zero.

krb5_kt_get_entry

Purpose
Returns an entry from the key table.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_kt_get_entry (

krb5_context context,
krb5_keytab ktid,
krb5_principal principal,
krb5_kvno vno,
krb5_enctype enctype,
krb5_keytab_entry * entry)

Kerberos APIs

96 V1R4.0 Network Authentication Service Programming

Parameters

Input
context

Specifies the Kerberos context.

ktid
Specifies the key table handle.

principal
Specifies the principal.

vno
Specifies the key version number for the key to be retrieved. Specify a version number of zero to
retrieve the key with the highest version number.

enctype
Specifies the key encryption type. Specify an encryption type of zero if the encryption type does not
matter.

Output
entry

Returns the contents of the key table entry. The krb5_kt_free_entry() routine should be called to
release the entry contents when they are no longer needed.

Usage
The krb5_kt_get_entry() routine returns an entry from the key table for the specified principal. The entry
returned is the first one found in the key table that matches the requested principal and version and uses
a compatible encryption type. For example, an entry that uses ENCTYPE_DES_CBC_MD5 is compatible
with a requested encryption type of ENCTYPE_DES_CBC_CRC.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_kt_get_name

Purpose
Returns the key table name.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_kt_get_name (

krb5_context context,
krb5_keytab ktid,
char * name,
int name_size)

Parameters

Input
context

Specifies the Kerberos context.

ktid
Specifies the key table handle.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 97

name_size
Specifies the size of the buffer pointed to by the name parameter. The size must be large enough to
contain the key table name and the trailing delimiter. One way to do this is to allocate the buffer to be
MAX_KEYTAB_NAME_LENGTH+1 bytes.

Output
name

Returns the key table name.

Usage
The krb5_kt_get_name() routine returns the name of the key table. The returned name includes the key
table type prefix.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_kt_get_type

Purpose
Returns the key table type.

Format
#include <skrb/krb5.h>
char * krb5_kt_get_type (

krb5_context context,
krb5_keytab ktid)

Parameters

Input
context

Specifies the Kerberos context.

ktid
Specifies the key table handle.

Usage
The krb5_kt_get_type() routine returns the key table type.

The function return value is the address of the key table type. This is a read-only value and must not be
freed by the application.

krb5_kt_next_entry

Purpose
Returns the next entry from the key table.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_kt_next_entry (

krb5_context context,
krb5_keytab ktid,
krb5_keytab_entry * entry,
krb5_kt_cursor * cursor)

Kerberos APIs

98 V1R4.0 Network Authentication Service Programming

Parameters

Input
context

Specifies the Kerberos context.

ktid
Specifies the key table handle.

Input/Output
cursor

Specifies the cursor created by the krb5_kt_start_seq_get() routine. The cursor is updated upon
successful completion of this routine.

Output
entry

Returns the contents of the table entry. The krb5_kt_free_entry() routine should be called to release
the entry contents when they are no longer needed.

Usage
The krb5_kt_next_entry() reads the next entry from the key table and returns it to the application. The
krb5_kt_start_seq_get() routine must be called to begin the sequential read operation. The
krb5_kt_next_entry() routine is then called repeatedly to read table entries. Finally, the
krb5_kt_end_seq_get() routine is called when no more entries are to be read.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_kt_read_service_key

Purpose
Retrieves the service key from the key table.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_kt_read_service_key (

krb5_context context,
krb5_pointer keytab_name
krb5_principal principal,
krb5_kvno vno,
krb5_enctype enctype,
krb5_keyblock ** key)

Parameters

Input
context

Specifies the Kerberos context.

keytab_name
Specifies the key table name. If a NULL address is specified, the default key table is used.

principal
Specifies the service principal.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 99

vno
Specifies the key version number for the key to be retrieved. Specify a version number of zero to
retrieve the key with the highest version number.

enctype
Specifies the key encryption type. Specify an encryption type of zero if the encryption type does not
matter.

Output
key

Returns the retrieved key. The krb5_free_keyblock() routine should be called to release the key when
it is no longer needed.

Usage
The krb5_kt_read_service_key() routine retrieves the key for a service principal from a key table.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_kt_register

Purpose
Defines a new key table type.

Format
#include <skrb/krb5.h>
tkrb5_error_code krb5_kt_register (

krb5_context context,
krb5_kt_ops * ops)

Parameters

Input
context

Specifies the Kerberos context.

ops
Specifies the key table operations vector. This vector defines the routines that are called to perform
the various key table operations for the new type.

Usage
The krb5_kt_register() routine registers a new key table type. An error is returned if the key table type
has already been registered. Once the new type is registered, it can be used by any thread in the current
process. The type is not known outside the current process and is no longer registered when the
application ends.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_kt_remove_entry

Purpose
Removes an entry from a key table.

Kerberos APIs

100 V1R4.0 Network Authentication Service Programming

Format
#include <skrb/krb5.h>
krb5_error_code krb5_kt_remove_entry (

krb5_context context,
krb5_keytab ktid,
krb5_keytab_entry * entry)

Parameters

Input
context

Specifies the Kerberos context.

ktid
Specifies the key table handle.

entry
Specifies the entry to be removed from the key table.

Usage
The krb5_kt_remove_entry() routine removes an entry from a key table. The key table type must support
write operations.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_kt_resolve

Purpose
Resolves a key table name.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_kt_resolve (

krb5_context context,
krb5_const char * keytab_name,
krb5_keytab * ktid)

Parameters

Input
context

Specifies the Kerberos context.

keytab_name
Specifies the key table name in the format type:name. The type must be a registered key table type
and the name must uniquely identify a particular key table of the specified type.

Output
ktid

Returns the key table handle.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 101

Usage
The krb5_kt_resolve() routine resolves a key table name and returns a handle that can be used to
access the table. The Kerberos runtime supports two key table types: FILE and WRFILE. Additional key
table types can be registered by the application by calling the krb5_kt_register() routine. If no type is
specified, the default is FILE.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_kt_start_seq_get

Purpose
Starts sequentially retrieving entries from the key table.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_kt_start_seq_get (

krb5_context context,
krb5_keytab ktid,
krb5_kt_cursor * cursor)

Parameters

Input
context

Specifies the Kerberos context.

ktid
Specifies the key table handle.

Output
cursor

Returns the cursor. The krb5_kt_end_seq_get() routine should be called to release the cursor at the
completion of the sequential read operation.

Usage
The krb5_kt_start_seq_get() routine prepares for sequentially reading entries in the key table. The
krb5_kt_next_entry() routine is called repeatedly to retrieve each successive table entry. The
krb5_kt_end_seq_get() routine is called at the completion of the read operation.

The key table is locked when the krb5_kt_start_seq_get() routine is called and remains locked until the
krb5_kt_end_seq_get() routine is called. Write access to the key table by other processes and threads is
blocked until the table is unlocked. After the krb5_kt_start_seq_get() routine has been called, the current
thread may not call any other key table functions except krb5_kt_next_entry() and
krb5_kt_end_seq_get() for the specified table.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_md4_crypto_compat_ctl

Purpose
Sets the compatibility mode for MD4 checksum generation.

Kerberos APIs

102 V1R4.0 Network Authentication Service Programming

Format
#include <skrb/krb5.h>
void krb5_md4_crypto_compat_ctl (

krb5_boolean compat_mode)

Parameters

Input
compat_mode

Specifies the compatibility mode as TRUE or FALSE.

Usage
The krb5_md4_crypto_compat_ctl() routine sets the compatibility mode for MD4 DES checksum
generation. Early beta levels of Kerberos Version 5 computed the MD4 DES checksum incorrectly.
Enabling compatibility mode causes the Kerberos runtime to generate the MD4 DES checksum in the
same way while disabling compatibility mode causes the Kerberos runtime to generate the checksum
correctly.

MD4 compatibility mode is set for the entire process by this routine and overrides the compatibility mode
set by the rsa_md4_des_compat entry in the Kerberos configuration file.

krb5_md5_crypto_compat_ctl

Purpose
Sets the compatibility mode for MD5 checksum generation.

Format
#include <skrb/krb5.h>

void krb5_md5_crypto_compat_ctl (
krb5_boolean compat_mode)

Parameters

Input
compat_mode

Specifies the compatibility mode as TRUE or FALSE.

Usage
The krb5_md5_crypto_compat_ctl() routine sets the compatibility mode for MD5 DES checksum
generation. Early beta levels of Kerberos Version 5 computed the MD5 DES checksum incorrectly.
Enabling compatibility mode causes the Kerberos runtime to generate the MD5 DES checksum in the
same way while disabling compatibility mode causes the Kerberos runtime to generate the checksum
correctly.

MD5 compatibility mode is set for the entire process by this routine and overrides the compatibility mode
set by the rsa_md5_des_compat entry in the Kerberos configuration file.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 103

krb5_mk_error

Purpose
Creates a Kerberos KRB_ERROR message.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_mk_error (

krb5_context context,
const krb5_error * dec_err,
krb5_data * enc_err)

Parameters

Input
context

Specifies the Kerberos context.

dec_err
Specifies the krb5_error structure that is to be encoded.

Output
enc_err

Returns the encoded krb5_error structure as a byte stream. The storage pointed to by the data field
of the krb5_data structure should be freed by the application when it is no longer needed.

Usage
The krb5_mk_error() routine creates a Kerberos KRB_ERROR message. This message is then sent to
the remote partner instead of sending a reply message. For example, if an error is detected while
processing an AP_REQ message, the application returns a KRB_ERROR message instead of an AP_REP
message.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_mk_priv

Purpose
Creates a Kerberos KRB_PRIV message.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_mk_priv (

krb5_context context,
krb5_auth_context auth_context,
const krb5_data * userdata,
krb5_data * out_data,
krb5_replay_data * replay_data)

Parameters

Input
context

Specifies the Kerberos context.

Kerberos APIs

104 V1R4.0 Network Authentication Service Programming

userdata
Specifies the application data for the KRB_PRIV message.

Input/Output
auth_context

Specifies the authentication context.

Output
out_data

Returns the KRB_PRIV message. The storage pointed to by the data field of the returned parameter
should be freed by the application when it is no longer needed, by calling krb5_free_data_contents() .

replay_data
Returns replay information to the caller. This parameter is required if the
KRB5_AUTH_CONTEXT_RET_TIME or KRB5_AUTH_CONTEXT_RET_SEQUENCE flag is set in the
authentication context. Otherwise, NULL may be specified for this parameter.

Usage
The krb5_mk_priv() routine creates a KRB_PRIV message using data supplied by the application. This is
similar to the krb5_mk_safe() routine, but the message is encrypted and integrity-protected rather than
just integrity-protected. The krb5_rd_priv() routine decrypts and validates the message integrity. The
authentication context specifies the checksum type, the data encryption type, the keyblock used to seed
the checksum, the addresses of the sender and receiver, and the replay cache. The local address in the
authentication context is used to create the KRB_PRIV message and must be present. The remote
address is optional. The authentication context flags determine whether sequence numbers or timestamps
should be used to identify the message.

The encryption type is taken from the keyblock in the authentication context. If the initial vector has been
set in the authentication context, it is used as the initialization vector for the encryption (if the encryption
type supports initialization) and its contents are replaced with the last block of encrypted data upon return.

If timestamps are used (KRB5_AUTH_CONTEXT_DO_TIME is set), an entry describing the message is
entered in the replay cache so that callers may detect if this message is sent back to them by an attacker.
An error is returned if the authentication context does not specify a replay cache.

If sequence numbers are used (KRB5_AUTH_CONTEXT_DO_SEQUENCE or
KRB5_AUTH_CONTEXT_RET_SEQUENCE is set), then the local sequence number in the authentication
context is placed in the protected message as its sequence number.

The encryption key is obtained from the local subkey, the remote subkey, or the session key, in that order.
The application is responsible for setting a checksum type in the authentication context that is compatible
with the encryption key. For example, an error is returned if a DES3 encryption key is used with a DES
checksum type.

Due to government export regulations, some encryption algorithms may not be available on the current
system. If the requested encryption algorithm is valid but not available, the function return value is set to
KRB5_NO_CONF.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_mk_rep

Purpose
Creates a Kerberos AP_REP message.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 105

Format
#include <skrb/krb5.h>
krb5_error_code krb5_mk_rep (

krb5_context context,
krb5_auth_context auth_context,
krb5_data * out_data)

Parameters

Input
context

Specifies the Kerberos context.

auth_context
Specifies the authentication context.

Output
out_data

Returns the AP_REP message. The storage pointed to by the data field of the krb5_data structure
should be freed by the application when it is no longer needed.

Usage
The krb5_mk_rep() routine creates an AP_REP message using information in the authentication context.
An AP_REP message is returned to the partner application after processing an AP_REQ message
received from the partner application. The information in the authentication context is set by the
krb5_rd_req() routine when it processes the AP_REQ message.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_mk_req

Purpose
Creates a Kerberos AP_REQ message.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_mk_req (

krb5_context context,
krb5_auth_context * auth_context,
const krb5_flags ap_req_options,
char * service,
char * hostname,
krb5_data * in_data,
krb5_ccache ccache,
krb5_data * out_data)

Parameters

Input
context

Specifies the Kerberos context.

ap_req_options
Specifies request options as follows:

Kerberos APIs

106 V1R4.0 Network Authentication Service Programming

v AP_OPTS_USE_SESSION_KEY - Use session key instead of server key for the service ticket. The
credentials must include a ticket that is encrypted in the session key.

v AP_OPTS_MUTUAL_REQUIRED - Mutual authentication required.

v AP_OPTS_USE_SUBKEY - Generate a subsession key from the current session key obtained from
the credentials.

service
Specifies the name of the service.

hostname
Specifies the host name that identifies the desired service instance.

in_data
Specifies the application data whose checksum is to be included in the authenticator. Specify NULL for
this parameter if no checksum is to be included in the authenticator.

ccache
Specifies the credentials cache that is to be used to obtain credentials to the desired service.

Input/Output
auth_context

Specifies the authentication context. A new authentication context is created and returned in this
parameter if the value is NULL.

Output
out_data

Returns the generated AP_REQ message. The storage pointed to by the data field in the returned
krb5_data structure should be freed by the application when it is no longer needed.

Usage
The krb5_mk_req() routine generates an AP_REQ message. The checksum of the application data is
included in the authenticator that is part of the AP_REQ message. This message is then sent to the
partner application, which calls the krb5_rd_req() routine to validate the authenticity of the message. The
checksum method set in the authentication context is used to generate the checksum.

The krb5_sname_to_principal() routine is called to convert the service and hostname parameters to a
Kerberos principal. The krb5_get_host_realm() routine is called to convert the hostname parameter to a
Kerberos realm. If the credentials cache does not already contain a service ticket for the target server, the
Kerberos runtime issues a default TGS request to obtain the credentials and stores them in the cache.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_mk_req_extended

Purpose
Creates a Kerberos AP_REQ message.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_mk_req_extended (

krb5_context context,
krb5_auth_context * auth_context,
const krb5_flags ap_req_options,
krb5_data * appl_data,
krb5_creds * in_creds,
krb5_data * out_data)

Kerberos APIs

Chapter 2. Kerberos programming interfaces 107

Parameters

Input
context

Specifies the Kerberos context.

ap_req_options
Specifies request options as follows:

v AP_OPTS_USE_SESSION_KEY - Use session key instead of server key for the service ticket. The
credentials must include a ticket that is encrypted in the session key.

v AP_OPTS_MUTUAL_REQUIRED - Mutual authentication required.

v AP_OPTS_USE_SUBKEY - Generate a subsession key from the current session key obtained from
the credentials.

appl_data
Specifies the application data whose checksum is to be included in the authenticator. Specify NULL for
this parameter if no checksum is to be included in the authenticator.

in_creds
Specifies the credentials for the specified service.

Input/Output
auth_context

Specifies the authentication context. A new authentication context is created and returned in this
parameter if the value is NULL.

Output
out_data

Returns the generated AP_REQ message. The storage pointed to by the data field in the returned
krb5_data structure should be freed by the application when it is no longer needed.

Usage
The krb5_mk_req_extended() routine is similar to the krb5_mk_req() routine but the caller passes the
actual credentials as a parameter instead of letting the Kerberos runtime construct the credentials.

The krb5_mk_req_extended() routine generates an AP_REQ message. The checksum of the application
data is included in the authenticator that is part of the AP_REQ message. This message is then sent to
the partner application, which calls the krb5_rd_req() routine to validate the authenticity of the message.
The checksum method set in the authentication context is used to generate the checksum.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_mk_safe

Purpose
Creates a Kerberos KRB_SAFE message.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_mk_safe (

krb5_context context,

Kerberos APIs

108 V1R4.0 Network Authentication Service Programming

krb5_auth_context auth_context,
const krb5_data * userdata,
krb5_data * out_data,
krb5_replay_data * replay_data)

Parameters

Input
context

Specifies the Kerberos context.

userdata
Specifies the application data for the KRB_SAFE message.

Input/Output
auth_context

Specifies the authentication context.

Output
out_data

Returns the KRB_SAFE message. The storage pointed to by the data field of the returned parameter
should be freed by the application when it is no longer needed, by calling krb5_free_data_contents .

replay_data
Returns replay information to the caller. This parameter is required if the
KRB5_AUTH_CONTEXT_RET_TIME or KRB5_AUTH_CONTEXT_RET_SEQUENCE flag is set in the
authentication context. Otherwise, NULL may be specified for this parameter.

Usage
The krb5_mk_safe() routine creates a KRB_SAFE message using data supplied by the application.
Messages created by the krb5_mk_safe() routine are integrity-protected. The krb5_rd_safe() routine
returns an error if the message has been modified. The authentication context specifies the checksum
type, the keyblock used to seed the checksum, the addresses of the sender and receiver, and the replay
cache. The local address in the authentication context is used to create the KRB_SAFE message and
must be present. The remote address is optional. The authentication context flags determine whether
sequence numbers or timestamps should be used to identify the message.

If timestamps are used (KRB5_AUTH_CONTEXT_DO_TIME is set), an entry describing the message is
entered in the replay cache so that callers can detect if this message is sent back to them by an attacker.
An error is returned if the authentication context does not specify a replay cache.

If sequence numbers are used (KRB5_AUTH_CONTEXT_DO_SEQUENCE or
KRB5_AUTH_CONTEXT_RET_SEQUENCE is set), then the local sequence number in the authentication
context is placed in the protected message as its sequence number.

The encryption key is obtained from the local subkey, the remote subkey, or the session key, in that order.
The application is responsible for setting a checksum type in the authentication context that is compatible
with the encryption key. For example, an error is returned if a DES3 encryption key is used with a DES
checksum type.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 109

krb5_os_hostaddr

Purpose
Returns the network addresses used by a specific host system.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_os_hostaddr (

krb5_context context,
const char * host,
krb5_address *** addrs)

Parameters

Input
context

Specifies the Kerberos context.

host
Specifies the name of the host system. The name must be acceptable for use with the getaddrinfo()
system function.

Output
addrs

Returns an array of krb5_address pointers. The last entry in the array is a NULL pointer. The
krb5_free_addresses() routine should be called to release the address array when it is no longer
needed.

Usage
The krb5_os_hostaddr() routine returns the network addresses that are available on the specified host
system. Only the AF_INET and AF_INET6 address families are supported. The getaddrinfo() system
function is used to look up the addresses assigned to the specified host. A mapped IPv6 address is
returned as the corresponding IPv4 address.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_os_localaddr

Purpose
Returns the network addresses used by the local system.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_os_localaddr (

krb5_context context,
krb5_address *** addrs)

Parameters

Input
context

Specifies the Kerberos context.

Kerberos APIs

110 V1R4.0 Network Authentication Service Programming

|
|
|

|
|
|
|

Output
addrs

Returns an array of krb5_address pointers. The last entry in the array is a NULL pointer. The
krb5_free_addresses() routine should be called to release the address array when it is no longer
needed.

Usage
The krb5_os_localaddr() routine returns the network addresses that are available on the local system.
Only the AF_INET and AF_INET6 address families are supported. A mapped IPv6 address is returned as
the corresponding IPv4 address.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_parse_name

Purpose
Creates a Kerberos principal from a text string.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_parse_name (

krb5_context context,
const char * name,
krb5_principal * principal)

Parameters

Input
context

Specifies the Kerberos context.

name
Specifies the string to be parsed. The string must be in the format name@realm.

Output
principal

Returns the Kerberos principal. The krb5_free_principal() routine should be called to release the
principal when it is no longer needed.

Usage
The krb5_parse_name() routine converts a text string into a Kerberos principal. The string must be in the
format name@realm. If the realm is not specified, the default realm is used. Each forward slash in the
name starts a new name component unless it is escaped by preceding the forward slash with a backward
slash. Forward slashes in the realm are not treated as component separators and are copied unchanged.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_principal_compare

Purpose
Compares two Kerberos principals.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 111

|
|
|

Format
#include <skrb/krb5.h>
krb5_boolean krb5_principal_compare (

krb5_context context,
krb5_const_principal princ1,
krb5_const_principal princ2)

Parameters

Input
context

Specifies the Kerberos context.

princ1
Specifies the first principal to be compared.

princ2
Specifies the second principal to be compared.

Usage
The krb5_principal_compare() routine compares two Kerberos principals. The function return value is
TRUE if the principals are the same and FALSE if they are not the same.

krb5_random_confounder

Purpose
Creates a random confounder.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_random_confounder (

krb5_context context,
int buffer_size,
krb5_pointer output_buffer)

Parameters

Input
context

Specifies the Kerberos context.

buffer_size
Specifies the size of the output buffer.

Output
output_buffer

Specifies the buffer to receive the confounder.

Usage
The krb5_random_confounder() routine creates a random value that can be used as a confounder when
encrypting data. A confounder is used to initialize the encryption-block chaining value so that the encrypted
result is different each time a data value is encrypted even when the data value and encryption key are
not changed.

Kerberos APIs

112 V1R4.0 Network Authentication Service Programming

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_rc_close

Purpose
Closes a replay cache.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_rc_close (

krb5_context context,
krb5_rcache rcache)

Parameters

Input
context

Specifies the Kerberos context.

rcache
Specifies the replay cache handle.

Usage
The krb5_rc_close() routine closes a replay cache. The cache handle may not be used once this routine
completes.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_rc_default

Purpose
Resolves the default replay cache.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_rc_default (

krb5_context context,
krb5_rcache * rcache)

Parameters

Input
context

Specifies the Kerberos context.

Output
rcache

Returns the replay cache handle.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 113

Usage
The krb5_rc_default() routine resolves the default replay cache and returns a handle that can be used to
access the table. This is equivalent to calling the krb5_rc_resolve() routine with the name returned by the
krb5_rc_default_name() routine.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_rc_default_name

Purpose
Returns the default replay cache name.

Format
#include <skrb/krb5.h>
char * krb5_rc_default_name (

krb5_context context)

Parameters

Input
context

Specifies the Kerberos context.

Usage
The krb5_rc_default_name() routine returns the name of the default replay cache for the current user.
The KRB5RCACHENAME environment variable defines the default replay cache name.

The function return value is the default replay cache name or NULL if the default name has not been set.
The return value is the address of a read-only string and must not be freed by the application.

krb5_rc_destroy

Purpose
Deletes a replay cache.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_rc_destroy (

krb5_context context,
krb5_rcache rcache)

Parameters

Input
context

Specifies the Kerberos context.

rcache
Specifies the replay cache handle.

Kerberos APIs

114 V1R4.0 Network Authentication Service Programming

Usage
The krb5_rc_destroy() routine closes and deletes a replay cache. The cache handle may not be used
after this routine completes.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_rc_expunge

Purpose
Deletes expired entries from the replay cache.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_rc_expunge (

krb5_context context,
krb5_rcache rcache)

Parameters

Input
context

Specifies the Kerberos context.

rcache
Specifies the replay cache handle.

Usage
The krb5_rc_expunge() routine deletes expired entries from the replay cache. The entry lifespan is set by
the krb5_rc_initialize() routine. This routine should be called periodically to clean up the replay cache.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_rc_free_entry_contents

Purpose
Releases the storage associated with a replay cache entry.

Format
#include <skrb/krb5.h>
void krb5_rc_free_entry_contents (

krb5_context context,
krb5_donot_replay * entry)

Parameters

Input
context

Specifies the Kerberos context.

entry
Specifies the entry to be released.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 115

Usage
The krb5_rc_free_entry_contents() releases the contents of a replay entry. The krb5_donot_replay
structure itself is not released.

krb5_rc_get_lifespan

Purpose
Returns the authenticator lifespan for entries in the replay cache.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_rc_get_lifespan (

krb5_context context,
krb5_rcache rcache,
krb5_deltat * span)

Parameters

Input
context

Specifies the Kerberos context.

rcache
Specifies the replay cache handle.

Output
span

Returns the authenticator lifespan in seconds.

Usage
The krb5_rc_get_lifespan() routine returns the authenticator lifespan that was set by the
krb5_rc_initialize() routine.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_rc_get_name

Purpose
Returns the replay cache name.

Format
#include <skrb/krb5.h>
char * krb5_rc_get_name (

krb5_context context,
krb5_rcache rcache)

Parameters

Input
context

Specifies the Kerberos context.

Kerberos APIs

116 V1R4.0 Network Authentication Service Programming

rcache
Specifies the replay cache handle.

Usage
The krb5_rc_get_name() routine returns the name of the replay cache. The returned name does not
include the replay cache type prefix.

The function return value is the address of the replay cache name. This is a read-only value and must not
be freed by the application.

krb5_rc_get_type

Purpose
Returns the replay cache type.

Format
#include <skrb/krb5.h>
char * krb5_rc_get_type (

krb5_context context,
krb5_rcache rcache)

Parameters

Input
context

Specifies the Kerberos context.

rcache
Specifies the replay cache handle.

Usage
The krb5_rc_get_type() routine returns the replay cache type.

The function return value is the address of the replay cache type. This is a read-only value and must not
be freed by the application.

krb5_rc_initialize

Purpose
Initializes the replay cache.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_rc_initialize (

krb5_context context,
krb5_rcache rcache,
krb5_deltat span)

Kerberos APIs

Chapter 2. Kerberos programming interfaces 117

Parameters

Input
context

Specifies the Kerberos context.

rcache
Specifies the replay cache handle.

span
Specifies the authenticator lifespan in seconds.

Usage
The krb5_rc_initialize() routine initializes a replay cache. Any existing cache entries are deleted. The
authenticator lifespan indicates how long an authenticator remains valid. Once an authenticator has
expired, its replay cache entry can be deleted by calling the krb5_rc_expunge() routine.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_rc_recover

Purpose
Recovers the replay cache.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_rc_recover (

krb5_context context,
krb5_rcache rcache)

Parameters

Input
context

Specifies the Kerberos context.

rcache
Specifies the replay cache handle.

Usage
The krb5_rc_recover() routine reads a replay cache into storage after the application has been restarted.
Either krb5_rc_recover() or krb5_rc_initialize() must be called before any replay entries can be added to
the replay cache.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_rc_register_type

Purpose
Defines a new replay cache type.

Kerberos APIs

118 V1R4.0 Network Authentication Service Programming

Format
#include <skrb/krb5.h>
krb5_error_code krb5_rc_register_type (

krb5_context context,
krb5_rc_ops * ops)

Parameters

Input
context

Specifies the Kerberos context.

ops
Specifies the replay cache operations vector. This vector defines the routines that is called to perform
the various replay cache operations for the new type.

Usage
The krb5_rc_register_type() routine registers a new replay cache type. An error is returned if the replay
cache type has already been registered. Once the new type is registered, it can be used by any thread in
the current process. The type is not known outside the current process and is no longer registered when
the application ends.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_rc_resolve

Purpose
Resolves a replay cache name.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_rc_resolve (

krb5_context context,
krb5_rcache * rcache,
char * name)

Parameters

Input
context

Specifies the Kerberos context.

name
Specifies the replay cache name in the format type:name. The type must be a registered replay cache
type and the name must uniquely identify a particular replay cache of the specified type.

Output
rcache

Returns the replay cache handle.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 119

Usage
The krb5_rc_resolve() routine resolves a replay cache name and returns a handle that can be used to
access the cache. The Kerberos runtime supports two replay cache types: dfl and mem . Additional replay
cache types can be registered by the application by calling the krb5_rc_register_type() routine. If no type
is specified, the default is dfl .

After successfully calling krb5_rc_resolve() , the application should call either the krb5_rc_recover() or
the krb5_rc_initialize() routine. This initializes the in-storage replay cache structures. The use of
in-storage structures significantly improves performance but means that multiple replay cache handles
should not be opened for the same replay cache.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_rc_store

Purpose
Stores a new entry in the replay cache.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_rc_store (

krb5_context context,
krb5_rcache rcache,
krb5_donot_replay * replay)

Parameters

Input
context

Specifies the Kerberos context.

rcache
Specifies the replay cache handle.

replay
Specifies the replay entry.

Usage
The krb5_rc_store() routine stores a new entry in the replay cache after verifying that the entry is not
already in the cache. The krb5_auth_to_rep() routine can be used to create a replay entry from a
Kerberos authenticator. The krb5_rc_expunge() routine should be called periodically to purge expired
entries from the replay cache.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_rd_error

Purpose
Processes a Kerberos KRB_ERROR message.

Kerberos APIs

120 V1R4.0 Network Authentication Service Programming

Format
#include <skrb/krb5.h>
krb5_error_code krb5_rd_error (

krb5_context context,
const krb5_data * enc_err,
krb5_error ** dec_err)

Parameters

Input
context

Specifies the Kerberos context.

enc_err
Specifies the error message created by the krb5_mk_error() routine.

Output
dec_err

Returns the decoded error message. The krb5_free_error() routine should be called to release the
krb5_error structure when it is no longer needed.

Usage
The krb5_rd_error() routine processes a KRB_ERROR message created by the krb5_mk_error() routine
and returns a krb5_error structure.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_rd_priv

Purpose
Processes a Kerberos KRB_PRIV message.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_rd_priv (

krb5_context context,
krb5_auth_context auth_context,
const krb5_data * in_data,
krb5_data * out_data,
krb5_replay_data * replay_data)

Parameters

Input
context

Specifies the Kerberos context.

in_data
Specifies the buffer containing the KRB_PRIV message.

Input/Output
auth_context

Specifies the authentication context.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 121

Output
out_data

Returns the application data supplied to the krb5_mk_priv() routine. The application should release
the data when it is no longer needed by calling the krb5_free_data_contents() routine.

replay_data
Returns replay information to the caller. This parameter is required if the
KRB5_AUTH_CONTEXT_RET_TIME or KRB5_AUTH_CONTEXT_RET_SEQUENCE flag is set in the
authentication context. Otherwise, NULL may be specified for this parameter.

Usage
The krb5_rd_priv() routine processes a KRB_PRIV message and extracts the application data after
verifying its integrity. If timestamps are being used, the message is stored in the replay cache associated
with the authentication context.

The keyblock used for decrypting the data and for verifying message integrity is obtained from the
authentication context. The first non-NULL keyblock is used by checking the local_subkey ,
remote_subkey , or keyblock , in that order. If the initialization vector in the authentication context has
been set, it is used to initialize the decryption (if the encryption type supports initialization) and its contents
are replaced with the last block of encrypted data in the message upon return.

The remote address in the authentication context must be present. It specifies the address of the sender.
The address type used for the krb5_rd_priv() routine must be the same as the address type used for the
krb5_mk_priv() routine. An error is returned if the address in the message does not match the remote
address in the authentication context.

The local address in the authentication context is optional. If it is present, then it must match the receiver
address in the message. Otherwise, the receiver message in the message must match one of the local
addresses returned by the krb5_os_localaddr() routine.

If message sequence numbers are being used (KRB5_AUTH_CONTEXT_DO_SEQUENCE is set in the
authentication context), the remote sequence number in the authentication context must match the
sequence number in the message.

If timestamps are being used (KRB5_AUTH_CONTEXT_DO_TIME is set in the authentication context), the
timestamp in the message must be within the Kerberos clock skew for the current time. In addition, the
message must not be found in the replay cache obtained from the authentication context.

Due to government export regulations, some encryption algorithms may not be available on the current
system. If the requested encryption algorithm is valid but not available, the function return value is set to
KRB5_NO_CONF.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_rd_rep

Purpose
Processes a Kerberos AP_REP message.

Kerberos APIs

122 V1R4.0 Network Authentication Service Programming

Format
#include <skrb/krb5.h>
krb5_error_code krb5_rd_rep (

krb5_context context,
krb5_auth_context auth_context,
const krb5_data * in_data,
krb5_ap_rep_enc_part ** reply)

Parameters

Input
context

Specifies the Kerberos context.

in_data
Specifies the buffer containing the AP_REP message.

Input/Output
auth_context

Specifies the authentication context.

Output
reply

Returns the decrypted reply data. The krb5_free_ap_rep_enc_part() routine should be called to
release the reply when it is no longer needed.

Usage
The krb5_rd_rep() routine processes an AP_REP message created by the krb5_mk_rep() routine. The
authentication context is updated with sequencing information obtained from the reply message.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_rd_req

Purpose
Processes a Kerberos AP_REQ message.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_rd_req (

krb5_context context,
krb5_auth_context * auth_context,
const krb5_data * in_data,
krb5_const_principal server,
krb5_keytab keytab,
krb5_flags * ap_req_options,
krb5_ticket ** ticket)

Parameters

Input
context

Specifies the Kerberos context.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 123

in_data
Specifies the buffer containing the AP_REQ message.

server
Specifies the server name. The server principal in the AP_REQ must be the same as the principal
specified by this parameter. Specify NULL if any server principal is acceptable.

keytab
Specifies the key table that contains the server key. The default key table is used if NULL is specified
for this parameter.

Input/Output
auth_context

Specifies the authentication context. A new authentication context is created and returned in this
parameter if the value is NULL.

Output
ap_req_options

Returns the options from the AP_REQ message. Specify NULL for this parameter if the options are not
needed.

ticket
Returns the ticket from the AP_REQ message. Specify NULL for this parameter if the ticket is not
needed. The krb5_free_ticket() routine should be called to release the ticket when it is no longer
needed.

Usage
The krb5_rd_req() routine processes an AP_REQ message generated by the partner application. The
authenticator is extracted, validated, and stored in the authentication context. If the server parameter is not
NULL and no replay cache is associated with the authentication context, the Kerberos runtime creates a
replay cache and stores the cache handle in the authentication context.

If the authentication context contains a keyblock, it is used to decrypt the ticket in the AP_REQ message.
This is useful for user-to-user authentication. If the authentication context does not contain a keyblock, the
key table specified on the function call is used to obtain the decryption key.

The client in the authenticator must match the client in the ticket. If the remote address is set in the
authentication context, the address list in the ticket must either include that address or must be a null list.
If a replay cache handle is stored in the authentication context, the new authenticator is stored in the
cache after checking for replay.

If no errors are detected, the authenticator, subsession key, and remote sequence number are stored in
the authentication context. If AP_OPTS_MUTUAL_REQUIRED is specified in the AP_REQ message, the
local sequence number is XORed with the remote sequence number.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

If the Kerberos security server is running on the same system as the application, it is not necessary to
provide a key table. Instead, the krb5_rd_req() routine uses the Kerberos principal associated with the
current system identity to decrypt the ticket. In order to activate this support, the application must be
running with a user or group that has at least READ access to the IRR.RUSERMAP resource in the
FACILITY class, the KRB5_SERVER_KEYTAB environment variable must be set to 1, the Kerberos
principal associated with the current system identity must match the server principal in the ticket, and
NULL must be specified for the key table parameter on the call to the krb5_rd_req() routine.

Kerberos APIs

124 V1R4.0 Network Authentication Service Programming

|
|
|
|

krb5_rd_req_verify

Purpose
Processes a Kerberos AP_REQ message and verifies the application data checksum

Format
#include <skrb/krb5.h>
krb5_error_code krb5_rd_req_verify (

krb5_context context,
krb5_auth_context * auth_context,
const krb5_data * in_data,
const krb5_data * appl_data,
krb5_const_principal server,
krb5_keytab keytab,
krb5_flags * ap_req_options,
krb5_ticket ** ticket)

Parameters

Input
context

Specifies the Kerberos context.

in_data
Specifies the buffer containing the AP_REQ message.

appl_data
Specifies the application data to be verified. The checksum is computed for the supplied data and
compared to the checksum obtained from the authenticator. Specify NULL if the checksum is not to be
verified.

server
Specifies the server name. The server principal in the AP_REQ must be the same as the principal
specified by this parameter. Specify NULL if any server principal is acceptable.

keytab
Specifies the key table that contains the server key. The default key table is used if NULL is specified
for this parameter.

Input/Output
auth_context

Specifies the authentication context. A new authentication context is created and returned in this
parameter if the value is NULL.

Output
ap_req_options

Returns the options from the AP_REQ message. Specify NULL for this parameter if the options are not
needed.

ticket
Returns the ticket from the AP_REQ message. Specify NULL for this parameter if the ticket is not
needed. The krb5_free_ticket() routine should be called to release the ticket when it is no longer
needed.

Usage
The krb5_rd_req_verify() routine processes an AP_REQ message generated by the partner application
and verifies the application data checksum contained in the authenticator. The authenticator is extracted,

Kerberos APIs

Chapter 2. Kerberos programming interfaces 125

validated, and stored in the authentication context. If the server parameter is not NULL and no replay
cache is associated with the authentication context, the Kerberos runtime creates a replay cache and
stores the cache handle in the authentication context..

If the authentication context contains a keyblock, it is used to decrypt the ticket in the AP_REQ message.
This is useful for user-to-user authentication. If the authentication context does not contain a keyblock, the
key table specified on the function call is used to obtain the decryption key.

The client in the authenticator must match the client in the ticket. If the remote address has been set in the
authentication context, the request must have come from that address. If a replay cache handle is stored
in the authentication context, the new authenticator is stored in the cache after checking for replay.

If no errors are detected, the authenticator, subsession key, and remote sequence number are stored in
the authentication context. If AP_OPTS_MUTUAL_REQUIRED is specified in the AP_REQ message, the
local sequence number is XORed with the remote sequence number.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

If the Kerberos security server is running on the same system as the application, it is not necessary to
provide a key table. Instead, the krb5_rd_req_verify() routine uses the Kerberos principal associated with
the current system identity to decrypt the ticket. In order to activate this support, the application must be
running with a user or group that has at least READ access to the IRR.RUSERMAP resource in the
FACILITY class, the KRB5_SERVER_KEYTAB environment variable must be set to 1, the Kerberos
principal associated with the current system identity must match the server principal in the ticket, and
NULL must be specified for the key table parameter on the call to the krb5_rd_req_verify() routine.

krb5_rd_safe

Purpose
Processes a Kerberos KRB_SAFE message.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_rd_safe (

krb5_context context,
krb5_auth_context auth_context,
const krb5_data * in_data,
krb5_data * out_data,
krb5_replay_data * replay_data)

Parameters

Input
context

Specifies the Kerberos context.

in_data
Specifies the buffer containing the KRB_SAFE message

Input/Output
auth_context

Specifies the authentication context.

Kerberos APIs

126 V1R4.0 Network Authentication Service Programming

Output
out_data

Returns the application data supplied to the krb5_mk_safe() routine. The application should release
the data when it is no longer needed by calling the krb5_free_data_contents() routine.

replay_data
Returns replay information to the caller. This parameter is required if the
KRB5_AUTH_CONTEXT_RET_TIME or KRB5_AUTH_CONTEXT_RET_SEQUENCE flag is set in the
authentication context. Otherwise, NULL may be specified for this parameter.

Usage
The krb5_rd_safe() routine processes a KRB_SAFE message and extracts the application data after
verifying its integrity. If timestamps are being used, the message is stored in the replay cache associated
with the authentication context.

The keyblock used for verifying message integrity is obtained from the authentication context. The first
non-NULL keyblock is used by checking the local_subkey, remote_subkey, or keyblock, in that order.

The remote address in the authentication context must be present. It specifies the address of the sender.
The address type used for the krb5_rd_safe() routine must be the same as the address type used for the
krb5_mk_safe() routine. An error is returned if the address in the message does not match the remote
address in the authentication context.

The local address in the authentication context is optional. If it is present, then it must match the receiver
address in the message. Otherwise, the receiver address in the message must match one of the local
addresses returned by the krb5_os_localaddr() routine.

If message sequence numbers are being used (KRB5_AUTH_CONTEXT_DO_SEQUENCE is set in the
authentication context), the remote sequence number in the authentication context must match the
sequence number in the message.

If timestamps are being used (KRB5_AUTH_CONTEXT_DO_TIME is set in the authentication context), the
timestamp in the message must be within the Kerberos clock skew for the current time. In addition, the
message must not be found in the replay cache obtained from the authentication context.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_read_password

Purpose
Reads a password from the terminal in non-display mode.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_read_password (

krb5_context context,
const char * prompt,
const char * prompt2,
char * return_pwd,
int * size_return)

Kerberos APIs

Chapter 2. Kerberos programming interfaces 127

Parameters

Input
context

Specifies the Kerberos context.

prompt
Specifies the password prompt string. This string is displayed before reading the password from the
terminal.

prompt2
Specifies the password verification string. This string is displayed before re-reading the password from
the terminal. Specify NULL for this parameter if you do not want the password to be entered a second
time for verification.

Input/Output
size_return

Specifies the size of the password buffer, including the string delimiter. The actual password length,
excluding the string delimiter, is returned upon completion.

Output
return_pwd

Returns the password as a null-terminated string.

Usage
The krb5_read_password() routine reads a password from the terminal in non-display mode. The
supplied buffer must be large enough to hold the password (any characters entered after the buffer size is
reached are discarded). The size_return parameter must be set to the size of the password buffer before
calling the krb5_read_password() routine. The actual password length is returned in the size_return
parameter upon completion.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_realm_compare

Purpose
Compares the realms of two principals.

Format
#include <skrb/krb5.h>
krb5_boolean krb5_realm_compare (

krb5_context context,
krb5_const_principal princ1,
krb5_const_principal princ2)

Parameters

Input
context

Specifies the Kerberos context.

princ1
Specifies the first principal to be compared.

Kerberos APIs

128 V1R4.0 Network Authentication Service Programming

princ2
Specifies the second principal to be compared.

Usage
The krb5_realm_compare() routine compares the realms for two principals. The function return value will
be TRUE if the realms are the same and FALSE if they are not the same.

krb5_recvauth

Purpose
Receives an authentication message sent by the krb5_sendauth() routine

Format
#include <skrb/krb5.h>
krb5_error_code krb5_recvauth (

krb5_context context,
krb5_auth_context * auth_context,
krb5_pointer socket,
char * appl_version,
krb5_principal server,
krb5_int32 flags,
krb5_keytab keytab,
krb5_ticket ** ticket)

Parameters

Input
context

Specifies the Kerberos context.

socket
Specifies the address of a socket descriptor. This descriptor must represent a TCP stream connection
and not a UDP datagram connection.

appl_version
Specifies the application version message. An error is returned if this application version message
does not match the application version message supplied by the sender. Specify NULL for this
parameter if the application version message does not need to be verified. The supplied application
version message is converted to the network code page (ISO 8859-1) before comparing it with the
sender’s application version message.

server
Specifies the server name. The server principal in the AP_REQ must be the same as the principal
specified by this parameter. Specify NULL if any server principal is acceptable.

flags
Specifies flags for the krb5_recvauth() routine. There are currently no defined flags.

keytab
Specifies the key table that contains the server key. The default key table is used if NULL is specified
for this parameter.

Input/Output
auth_context

Specifies the authentication context. A new authentication context is created and returned in this
parameter if the value is NULL.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 129

|

|

|

|

|
|
|
|
|
|
|
|
|
|

|

|

|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|

|

|
|
|

Output
ticket

Returns the service ticket in the AP_REQ message. Specify NULL for this parameter if the ticket is not
needed. The krb5_free_ticket() routine should be called to release the ticket when it is no longer
needed.

Usage
The krb5_recvauth() routine processes an authentication message stream generated by the
krb5_sendauth() routine. It receives the authentication message and sends the authentication response
using the socket descriptor supplied by the application. The application is responsible for establishing the
connection before calling the krb5_recvauth() routine.

The krb5_recvauth() routine processes an AP_REQ message generated by the partner application. The
authenticator is extracted, validated, and stored in the authentication context. If the server parameter is not
NULL and no replay cache is associated with the authentication context, the Kerberos runtime creates a
replay cache and stores the cache handle in the authentication context.

If the authentication context contains a keyblock, it is used to decrypt the ticket in the AP_REQ message.
This is useful for user-to-user authentication. If the authentication context does not contain a keyblock, the
key table specified on the function call is used to obtain the decryption key.

The client in the authenticator must match the client in the ticket. If the remote address is set in the
authentication context, the address list in the ticket must either include that address or must be a null list.
If a replay cache handle is stored in the authentication context, the new authenticator is stored in the
cache after checking for replay.

If no errors are detected, the authenticator, subsession key, and remote sequence number are stored in
the authentication context. If AP_OPTS_MUTUAL_REQUIRED is specified in the AP_REQ message, the
local sequence number is XORed with the remote sequence number.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

If the Kerberos security server is running on the same system as the application, it is not necessary to
provide a key table. Instead, the krb5_recvauth() routine uses the Kerberos principal associated with the
current system identity to decrypt the ticket. In order to activate this support, these conditions must be
true:

v The application must be running with a user or group that has at least READ access to the
IRR.RUSERMAP resource in the FACILITY class.

v The KRB5_SERVER_KEYTAB environment variable must be set to 1.

v The Kerberos principal associated with the current system identity must match the server principal in the
ticket.

v NULL must be specified for the key table parameter on the call to the krb5_recvauth() routine.

krb5_sendauth

Purpose
Sends an authentication message for processing by the krb5_recvauth() routine.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_sendauth (

krb5_context context,
krb5_auth_context * auth_context,

Kerberos APIs

130 V1R4.0 Network Authentication Service Programming

|

|
|
|
|

|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|

|
|
|
|

|
|

|

|
|

|

|

|

|

|

|
|
|
|

krb5_pointer socket,
char * appl_version,
krb5_principal client,
krb5_principal server,
krb5_int32 ap_req_options,
krb5_data * appl_data,
krb5_creds * in_creds,
krb5_ccache ccache,
krb5_error ** error,
krb5_ap_rep_enc_part ** rep_result,
krb5_creds ** out_creds)

Parameters

Input
context

Specifies the Kerberos context.

socket
Specifies the address of a socket descriptor. This descriptor must represent a TCP stream connection
and not a UDP datagram connection.

appl_version
Specifies the application version message. An error is returned if this application version message
does not match the application version message supplied by the receiver. The supplied application
version message is converted to the network code page (ISO 8859-1) before being sent to the partner
application.

client
Specifies the client name. This parameter is ignored if a non-NULL value is supplied for the in_creds
parameter. The client name is obtained from the credentials cache if this parameter is NULL.

server
Specifies the server name. This parameter is ignored if a non-NULL value is provided for the in_creds
parameter.

ap_req_options
Specifies request options as follows:

v AP_OPTS_USE_SESSION_KEY - Use session key instead of server key for the service ticket. The
credentials must include a ticket that is encrypted in the session key.

v AP_OPTS_MUTUAL_REQUIRED - Mutual authentication required.

v AP_OPTS_USE_SUBKEY - Generate a subsession key from the current session key obtained from
the credentials.

appl_data
Specifies the application data whose checksum is to be included in the authenticator. Specify NULL for
this parameter if no checksum is to be included in the authenticator.

in_creds
Specifies the credentials for the specified service. The client and server parameters are ignored if a
non-NULL value is provided for the in_creds parameter. In this case, the client and server names must
be set in the input credentials. The service ticket may be supplied as part of the input credentials by
setting a non-zero ticket length value. If the service ticket is not supplied as part of the input
credentials, the Kerberos runtime obtains a service ticket using the ticket-granting ticket retrieved from
the credentials cache.

When the Kerberos runtime obtains the service ticket, additional fields are checked in the input
credentials. The second_ticket field must be set if the service ticket is to be encrypted in a session
key. The ticket expiration time can be set to override the default expiration time. The key encryption
type can be set to override the default ticket encryption type.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 131

|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|

|
|

|

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

ccache
Specifies the credentials cache used to obtain credentials to the desired service. The credentials
cache is not used when the service ticket is supplied as part of the input credentials. The default
credentials cache is used if this parameter is NULL.

Input/Output
auth_context

Specifies the authentication context. A new authentication context is created and returned in this
parameter if the value is NULL.

Output
error

Returns the KRB_ERROR message if an authentication error is reported by the partner application.
The krb5_free_error() routine should be called to release the error message when it is no longer
needed. Specify NULL for this parameter if the error message is not needed.

rep_result
Returns the decrypted reply data from the AP_REP message. The krb5_free_ap_rep_enc_part()
routine should be called to release the reply data when it is no longer needed. Specify NULL for this
parameter if the reply data is not needed. A reply is available only if AP_OPTS_MUTUAL_REQUIRED
is specified in the request options.

out_creds
Returns the service ticket. The krb5_free_creds() routine should be called to release the credentials
when they are no longer needed. Specify NULL for this parameter if the service ticket is not needed.

Usage
The krb5_sendauth() routine generates an authentication message stream for processing by the
krb5_recvauth() routine. It sends the authentication message and receives the authentication response
using the socket descriptor supplied by the application. The application is responsible for establishing the
connection before calling the krb5_sendauth() routine.

The krb5_sendauth() routine generates an AP_REQ message. The checksum of the application data is
included in the authenticator that is part of the AP_REQ message. This message is then sent to the
partner application, which calls the krb5_recvauth() routine to validate the authenticity of the message.
The checksum method set in the authentication context is used to generate the checksum.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_set_config_files

Purpose
Sets the files to be processed for Kerberos configuration requests.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_set_config_files (

krb5_context context,
const char ** names)

Kerberos APIs

132 V1R4.0 Network Authentication Service Programming

|
|
|
|

|

|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|
|

|

Parameters

Input
context

Specifies the Kerberos context.

names
Specifies an array of file names. The last entry in the array must be a NULL pointer.

Usage
The krb5_set_config_files() specifies the names of the files to be processed to obtain the Kerberos
configuration. This replaces the configuration files that were used to create the Kerberos context.
Changing the configuration files does not affect context values that have already been set from the old
configuration files.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_set_default_in_tkt_ktypes

Purpose
Sets the default encryption types used when requesting an initial ticket from the KDC.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_set_default_in_tkt_ktypes (

krb5_context context,
const krb5_enctype * ktypes)

Parameters

Input
context

Specifies the Kerberos context.

ktypes
Specifies an array of krb5_enctype values to be used when requesting an initial ticket. The last
element in the array must be set to ENCTYPE_NULL. The following symbolic definitions are provided
for specifying the encryption types:

v ENCTYPE_DES_CBC_CRC - DES encryption with a CRC checksum

v ENCTYPE_DES_CBC_MD4 - DES encryption with an MD4 checksum

v ENCTYPE_DES_CBC_MD5 - DES encryption with an MD5 checksum

v ENCTYPE_DES_HMAC_SHA1 - DES encryption with SHA1 checksum

v ENCTYPE_DES3_CBC_SHA1 - DES3 encryption with SHA1 checksum

Usage
The krb5_set_default_in_tkt_ktypes() routine sets the default encryption types used when requesting the
initial ticket from the KDC. In order to interoperate with older Kerberos V5 servers, you should include
ENCTYPE_DES_CBC_CRC as one of the encryption types.

The encryption types specified override any values specified by the default_tkt_enctypes entry in the
Kerberos configuration file.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 133

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_set_default_realm

Purpose
Sets the default realm for the local system.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_set_default_realm (

krb5_context context,
const char * realm)

Parameters

Input
context

Specifies the Kerberos context.

realm
Specifies the name for the default realm.

Usage
The krb5_set_default_realm() routine sets the default realm for the specified Kerberos context. This
overrides the default realm set by the Kerberos configuration file. The realm set by
krb5_set_default_realm() applies only to the Kerberos context specified by the context parameter.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_set_default_tgs_ktypes

Purpose
Sets the default encryption types used when requesting a service ticket from the KDC.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_set_default_tgs_ktypes (

krb5_context context,
const krb5_enctype * ktypes)

Parameters

Input
context

Specifies the Kerberos context.

ktypes
Specifies an array of krb5_enctype values which will be used when requesting a service ticket. The
last element in the array must be set to ENCTYPE_NULL. The following symbolic definitions are
provided for specifying the encryption types:

v ENCTYPE_DES_CBC_CRC - DES encryption with a CRC checksum

v ENCTYPE_DES_CBC_MD4 - DES encryption with an MD4 checksum

Kerberos APIs

134 V1R4.0 Network Authentication Service Programming

v ENCTYPE_DES_CBC_MD5 - DES encryption with an MD5 checksum

v ENCTYPE_DES_HMAC_SHA1 - DES encryption with SHA1 checksum

v ENCTYPE_DES3_CBC_SHA1 - DES3 encryption with SHA1 checksum

Usage
The krb5_set_default_tgs_ktypes() routine sets the default encryption types used when requesting a
service ticket from the KDC. In order to interoperate with older Kerberos V5 servers, you should include
ENCTYPE_DES_CBC_CRC as one of the encryption types.

The encryption types specified overrides any values specified by the default_tgs_enctypes entry in the
Kerberos configuration file.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_sname_to_principal

Purpose
Converts a service name to a Kerberos principal.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_sname_to_principal (

krb5_context context,
const char * hostname,
const char * sname,
krb5_int32 type,
krb5_principal * ret_princ)

Parameters

Input
context

Specifies the Kerberos context.

hostname
Specifies the host containing the desired service instance. The local host is used if NULL is specified
for this parameter.

sname
Specifies the service name. The service name is set to host if NULL is specified for this parameter.

type
Specifies the type of host name provided as follows:

v KRB5_NT_SRV_HST - A DNS host name has been provided. The Kerberos runtime calls the
getaddrinfo() system function to obtain the canonical name for the host. The resulting host name is
then converted to lowercase.

v KRB5_NT_UNKNOWN - The host name type is unknown. No translation is performed on the
specified host name and is used as-is.

Output
ret_princ

Returns the generated principal. The krb5_free_principal() routine should be called to release the
principal when it is no longer needed.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 135

Usage
The krb5_sname_to_principal() routine generates a Kerberos principal from a service name and a host
name. The principal name is in the format sname/hostname@realm. The realm name that corresponds to
the host name is obtained by calling the krb5_get_host_realm() routine.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_svc_get_msg

Purpose
Returns a printable text message corresponding to a Kerberos error code.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_svc_get_msg (

krb5_ui_4 error_code,
char ** msg_text)

Parameters

Input
error_code

Specifies the Kerberos error code

Output
msg_text

Returns the character string describing the error code. The caller should free the character string
returned by this parameter when it is no longer needed by calling the krb5_free_string() routine.

Usage
The krb5_svc_get_msg() routine returns a printable character string that describes the error represented
by the supplied error code. This allows the application to log the error or display it to the user.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_timeofday

Purpose
Returns the current time of day in seconds since the epoch.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_timeofday (

krb5_context context,
krb5_timestamp * seconds)

Kerberos APIs

136 V1R4.0 Network Authentication Service Programming

Parameters

Input
context

Specifies the Kerberos context.

Output
seconds

Returns the number of seconds since the epoch.

Usage
The krb5_timeofday() routine returns the number of seconds since the epoch (January 1, 1970). The
returned time is not adjusted for local time differences.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_unparse_name

Purpose
Converts a Kerberos principal to a text string.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_unparse_name (

krb5_context context,
krb5_const_principal principal,
char ** name)

Parameters

Input
context

Specifies the Kerberos context.

principal
Specifies the principal to be converted.

Output
name

Returns the text string for the principal in the format name@realm. The application should free the text
string when it is no longer needed.

Usage
The krb5_unparse_name() routine creates a text string from a Kerberos principal. The string is in the
format name@realm with the name components separated by forward slashes. If a forward slash occurs
within a name component, it is escaped in the generated string by preceding the forward slash with a
backward slash.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 137

krb5_unparse_name_ext

Purpose
Converts a Kerberos principal to a text string.

Format
#include <skrb/krb5.h>
krb5_error_code krb5_unparse_name_ext (

krb5_context context,
krb5_const_principal principal,
char ** name,
int * size)

Parameters

Input
context

Specifies the Kerberos context.

principal
Specifies the principal to be converted.

Input/Output
name

Returns the text string for the principal in the format name@realm. The application should free the text
string when it is no longer needed. If the name parameter contains a NULL address upon entry,
krb5_unparse_name_ext() allocates a new buffer and returns the address in the name parameter and
the size in the size parameter. Otherwise, the name parameter must contain the address of an existing
buffer and the size parameter must contain the size of this buffer. The krb5_unparse_name_ext()
reallocates the buffer if necessary and returns the updated values in the name and size parameters.

size
The size of the buffer specified by the name parameter.

Usage
The krb5_unparse_name_ext() routine creates a text string from a Kerberos principal. The string is in the
format name@realm with the name components separated by forward slashes. If a forward slash occurs
within a name component, it is escaped in the generated string by preceding the forward slash with a
backward slash.

The krb5_unparse_name_ext() routine is similar to the krb5_unparse_name() routine, but it allows the
application to avoid the overhead of repeatedly allocating the output string when a large number of
conversions need to be performed.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

krb5_us_timeofday

Purpose
Returns the current time of day in seconds and microseconds since the epoch.

Kerberos APIs

138 V1R4.0 Network Authentication Service Programming

Format
#include <skrb/krb5.h>
krb5_error_code krb5_us_timeofday (

krb5_context context,
krb5_timestamp * seconds,
krb5_int32 * useconds)

Parameters

Input
context

Specifies the Kerberos context.

Output
seconds

Returns the seconds portion of the result.

useconds
Returns the microseconds portion of the result.

Usage
The krb5_us_timeofday() routine returns the number of seconds and microseconds since the epoch
(January 1, 1970). The returned time is not adjusted for local time differences.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code.

Kerberos APIs

Chapter 2. Kerberos programming interfaces 139

140 V1R4.0 Network Authentication Service Programming

Chapter 3. Kerberos administration programming interfaces

kadm5_chpass_principal

Purpose
Changes the password for a principal entry in the Kerberos database.

Format
#include <skrb/admin.h>
kadm5_ret_t kadm5_chpass_principal (

void * server_handle,
krb5_principal principal,
char * passwd)

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

principal
Specifies the principal whose password is to be changed.

passwd
Specifies the new password for the principal.

Usage
The kadm5_chpass_principal() routine changes the password for a principal entry in the Kerberos
database. You must have CHANGEPW authority, the requested principal entry must be your own entry, or
the administration session must be with the kadmin/changepw service

The kadm5_chpass_principal() routine generates an encryption key for each encryption type supported
by the Kerberos administration server. Use the kadm5_chpass_principal_3() routine if you want to
generate encryption keys for a subset of the available encryption types or if you want to retain the existing
encryption keys.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. These are
some of the common errors returned by the kadm5_chpass_principal() routine:

Table 2. Common errors returned by the kadm5_chpass_principal() routine

KADM5_AUTH_CHANGEPW Not authorized to change the password for the entry

KADM5_BAD_CLIENT_PARAMS Incorrect parameter specified

KADM5_BAD_LENGTH Password length is not valid

KADM5_BAD_SERVER_HANDLE Server handle is not valid

KADM5_GSS_ERROR GSS-API error

KADM5_PASS_Q_CLASS Specified password does not contain the minimum number of
character classes

KADM5_PASS_Q_DICT Specified password does not pass the dictionary test

KADM5_PASS_Q_TOOSHORT Specified password is too short

KADM5_PASS_REJECTED Password rejected by system policy

KADM5_PASS_REUSE Password has already been used

© Copyright IBM Corp. 2000, 2002 141

|
|
|
|

|

|

Table 2. Common errors returned by the kadm5_chpass_principal() routine (continued)

KADM5_PROTECT_PRINCIPAL Protected principal cannot be modified

KADM5_RPC_ERROR Communication error

KADM5_UNK_PRINC Unknown principal

kadm5_chpass_principal_3

Purpose
Changes the password for a principal entry in the Kerberos database.

Format
#include <skrb/admin.h>

kadm5_ret_t kadm5_chpass_principal_3 (
void * server_handle,
krb5_principal principal,
krb5_boolean keepold,
int n_ks_entries,
krb5_key_salt_tuple * ks_entries,
char * passwd)

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

principal
Specifies the principal whose password is to be changed.

keepold
Specifies whether to keep the old key entries. The number of retained keys is dependent upon the
Kerberos database implementation.

n_ks_entries
Specifies the number of key-salt entries.

ks_entries
Specifies an array of key-salt entries.

passwd
Specifies the new password for the principal.

Usage
The kadm5_chpass_principal_3() routine changes the password for a principal entry in the Kerberos
database. You must have CHANGEPW authority, the requested principal entry must be your own entry, or
the administration session must be with the kadmin/changepw service

The kadm5_chpass_principal_3() routine allows the specification of the encryption types used to
generate encryption keys from the supplied password. It is the same as the kadm5_chpass_principal()
routine if no key-salt entries are provided. An error is returned if an unsupported encryption type or salt
type is specified.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. These are
some of the common errors returned by the kadm5_chpass_principal_3() routine:

Kerberos admin APIs

142 V1R4.0 Network Authentication Service Programming

|

|

|

|

|
|
|
|
|
|
|
|
|

|

|

|
|

|
|

|
|
|

|
|

|
|

|
|

|

|
|
|

|
|
|
|

|
|

Table 3. Common errors returned by the kadm5_chpass_principal_3() routine

KADM5_AUTH_CHANGEPW Not authorized to change the password for the entry.

KADM5_BAD_CLIENT_PARAMS Incorrect parameter specified.

KADM5_BAD_ENCTYPE Encryption type is not valid.

KADM5_BAD_LENGTH Password length is not valid.

KADM5_BAD_SALTTYPE Salt type is not valid.

KADM5_BAD_SERVER_HANDLE Server handle is not valid.

KADM5_GSS_ERROR GSS-API error.

KADM5_PASS_Q_CLASS Specified password does not contain the minimum number of
character classes.

KADM5_PASS_Q_DICT Specified password does not pass the dictionary test.

KADM5_PASS_Q_TOOSHORT Specified password is too short.

KADM5_PASS_REJECTED Password rejected by system policy.

KADM5_PASS_REUSE Password has already been used.

KADM5_PROTECT_PRINCIPAL Protected principal cannot be modified.

KADM5_RPC_ERROR Communication error.

KADM5_UNK_PRINC Unknown principal.

kadm5_create_policy

Purpose
Creates a policy entry in the Kerberos database.

Format
#include <skrb/admin.h>
kadm5_ret_t kadm5_create_policy (

void * server_handle,
kadm5_policy_ent_t entry,
krb5_flags mask)

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

entry
Specifies the information for the policy entry.

mask
Specifies the fields in the krb5_policy_ent_t that are to be used to create the policy entry. The
following flags can be ORed together to define the mask:

v KADM5_POLICY - the policy name is set (this flag must be set when creating a policy entry)

v KADM5_PW_HISTORY_NUM - the password history count is set

v KADM5_PW_MIN_CLASSES - the minimum number of password character classes is set.

v KADM5_PW_MIN_LENGTH - the minimum password length is set.

v KADM5_PW_MIN_LIFE - the minimum password lifetime is set.

v KADM5_PW_MAX_LIFE - the maximum password lifetime is set.

Kerberos admin APIs

Chapter 3. Kerberos administration programming interfaces 143

||

||

||

||

||

||

||

||

||
|

||

||

||

||

||

||

||

Usage
The kadm5_create_policy() routine creates a policy entry in the Kerberos database. You must have ADD
authority.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. These are
some of the common errors returned by the kadm5_create_policy() routine:

Table 4. Common errors returned by the kadm5_create_policy() routine

KADM5_AUTH_ADD Not authorized to add an entry

KADM5_BAD_CLASS Character class count is not valid

KADM5_BAD_CLIENT_PARAMS Incorrect parameter specified

KADM5_BAD_HISTORY Password history count is not valid

KADM5_BAD_LENGTH Minimum password length is not valid

KADM5_BAD_MASK Incorrect policy creation mask specified

KADM5_BAD_MIN_PASS_LIFE Minimum password lifetime is not valid

KADM5_BAD_POLICY Policy name is not valid

KADM5_BAD_SERVER_HANDLE Server handle is not valid

KADM5_DUP Policy already exists

KADM5_GSS_ERROR GSS-API error

KADM5_RPC_ERROR Communication error

kadm5_create_principal

Purpose
Creates a principal entry in the Kerberos database.

Format
#include <skrb/admin.h>
kadm5_ret_t kadm5_create_principal (

void * server_handle,
kadm5_principal_ent_t entry,
krb5_flags mask,
char * passwd)

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

entry
Specifies the information for the principal entry.

mask
Specifies the fields in the krb5_principal_ent_t that are used to create the principal entry. The
following flags can be ORed together to define the mask:

v KADM5_ATTRIBUTES - the principal attributes are set.

v KADM5_KVNO - the key version number is set.

v KADM5_MAX_LIFE - the maximum ticket lifetime is set.

v KADM5_MAX_RLIFE - the maximum renewable lifetime is set.

Kerberos admin APIs

144 V1R4.0 Network Authentication Service Programming

v KADM5_POLICY - the policy name is set.

v KADM5_PRINCIPAL - the principal name is set (this flag must be set when creating a principal
entry)

v KADM5_PRINC_EXPIRE_TIME - the account expiration time is set.

v KADM5_PW_EXPIRATION - the password expiration time is set.

v KADM5_TL_DATA - the tagged data is set.

passwd
Specifies the password for the principal.

Usage
The kadm5_create_principal() routine creates a principal entry in the Kerberos database. For
KADM5_TL_DATA, the ability to store tagged data is dependent upon the database implementation. You
must have ADD authority.

The kadm5_create_principal() routine generates an encryption key for each encryption type supported by
the Kerberos administration server. Use the kadm5_create_principal_3() routine if you want to generate
encryption keys for a subset of the available encryption types.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. These are
some of the common errors returned by the kadm5_create_principal() routine:

Table 5. Common errors returned by the kadm5_create_principal() routine

KADM5_AUTH_ADD Not authorized to add an entry

KADM5_BAD_CLIENT_PARAMS Incorrect parameter specified

KADM5_BAD_SERVER_HANDLE Server handle is not valid

KADM5_BAD_MASK Incorrect principal creation mask specified

KADM5_DUP Principal already exists

KADM5_GSS_ERROR GSS-API error

KADM5_PASS_Q_CLASS Password does not contain the minimum number of character
classes

KADM5_PASS_Q_DICT Password does not pass the dictionary test

KADM5_PASS_Q_TOOSHORT Password is too short

KADM5_PASS_REJECTED Password rejected by system policy

KADM5_RPC_ERROR Communication error

KADM5_UNK_POLICY Policy does not exist

kadm5_create_principal_3

Purpose
Creates a principal entry in the Kerberos database.

Format
#include <skrb/admin.h>

kadm5_ret_t kadm5_create_principal_3 (
void *server_handle,
kadm5_principal_ent_tentry,

Kerberos admin APIs

Chapter 3. Kerberos administration programming interfaces 145

|
|
|

|

|

|

|

|

|
|
|
|
|

krb5_flagsmask,
intn_ks_entries,
krb5_key_salt_tuple *ks_entries,
char *passwd)

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

entry
Specifies the information for the principal entry.

mask
Specifies the fields in the krb5_principal_ent_t that are used to create the principal entry. The
following flags can be ORed together to define the mask:

v KADM5_ATTRIBUTES - the principal attributes are set.

v KADM5_KVNO - the key version number is set.

v KADM5_MAX_LIFE - the maximum ticket lifetime is set.

v KADM5_MAX_RLIFE - the maximum renewable lifetime is set.

v KADM5_POLICY - the policy name is set.

v KADM5_PRINCIPAL - the principal name is set (this flag must be set when creating a principal
entry)

v KADM5_PRINC_EXPIRE_TIME - the account expiration time is set.

v KADM5_PW_EXPIRATION - the password expiration time is set.

v KADM5_TL_DATA - the tagged data is set.

n_ks_entries
Specifies the number of key-salt entries.

ks_entries
Specifies an array of key-salt entries.

passwd
Specifies the password for the principal.

Usage
The kadm5_create_principal_3() routine creates a principal entry in the Kerberos database. For
KADM5_TL_DATA, the ability to store tagged data is dependent upon the database implementation. You
must have ADD authority.

The kadm5_create_principal_3() routine allows the specification of the encryption types used to generate
encryption keys from the supplied password. It is the same as the kadm5_create_principal() routine if no
key-salt entries are provided. An error is returned if an unsupported encryption type or salt type is
specified.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. These are
some of the common errors returned by the kadm5_create_principal() routine:

Table 6. Common errors returned by the kadm5_create_principal() routine

KADM5_AUTH_ADD Not authorized to add an entry.

KADM5_BAD_CLIENT_PARAMS Incorrect parameter specified.

KADM5_BAD_ENCTYPE Encryption type is not supported.

Kerberos admin APIs

146 V1R4.0 Network Authentication Service Programming

|
|
|
|

|

|

|
|

|
|

|
|
|

|

|

|

|

|

|
|

|

|

|

|
|

|
|

|
|

|

|
|
|

|
|
|
|

|
|

||

||

||

||

Table 6. Common errors returned by the kadm5_create_principal() routine (continued)

KADM5_BAD_SALTTYPE Salt type is not supported.

KADM5_BAD_SERVER_HANDLE Server handle is not valid.

KADM5_BAD_MASK Incorrect principal creation mask specified.

KADM5_DUP Principal already exists.

KADM5_GSS_ERROR GSS-API error.

KADM5_PASS_Q_CLASS Password does not contain the minimum number of character
classes.

KADM5_PASS_Q_DICT Password does not pass the dictionary test.

KADM5_PASS_Q_TOOSHORT Password is too short.

KADM5_PASS_REJECTED Password rejected by system policy.

KADM5_RPC_ERROR Communication error.

KADM5_UNK_POLICY Policy does not exist.

kadm5_delete_policy

Purpose
Deletes a policy entry from the Kerberos database.

Format
#include <skrb/admin.h>
kadm5_ret_t kadm5_delete_policy (

void * server_handle,
char * policy)

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

policy
Specifies the policy entry to be deleted.

Usage
The kadm5_delete_policy() routine deletes a policy entry from the Kerberos database. You must have
DELETE authority.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. These are
some of the common errors returned by the kadm5_delete_policy() routine:

Table 7. Common errors returned by the kadm5_delete_policy() routine

KADM5_AUTH_DELETE Not authorized to delete an entry

KADM5_BAD_CLIENT_PARAMS Incorrect parameter specified

KADM5_BAD_POLICY Policy name is not valid

KADM5_BAD_SERVER_HANDLE Server handle is not valid

KADM5_GSS_ERROR GSS-API error

KADM5_POLICY_REF Policy still refered to by one or more principal entries

Kerberos admin APIs

Chapter 3. Kerberos administration programming interfaces 147

|

||

||

||

||

||

||
|

||

||

||

||

||

Table 7. Common errors returned by the kadm5_delete_policy() routine (continued)

KADM5_RPC_ERROR Communication error

KADM5_UNK_PRINC Unknown principal

kadm5_delete_principal

Purpose
Deletes a principal entry from the Kerberos database.

Format
#include <skrb/admin.h>
kadm5_ret_t kadm5_delete_principal (

void * server_handle,
krb5_principal principal)

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

principal
Specifies the principal entry to be deleted.

Usage
The kadm5_delete_principal() routine deletes a principal entry from the Kerberos database. You must
have DELETE authority.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. These are
some of the common errors returned by the kadm5_delete_principal() routine:

Table 8. Common errors returned by the kadm5_delete_principal() routine

KADM5_AUTH_DELETE Not authorized to delete an entry

KADM5_BAD_CLIENT_PARAMS Incorrect parameter specified

KADM5_BAD_SERVER_HANDLE Server handle is not valid

KADM5_GSS_ERROR GSS-API error

KADM5_RPC_ERROR Communication error

KADM5_UNK_PRINC Unknown principal

kadm5_destroy

Purpose
Closes a session with the Kerberos administration server.

Format
#include <skrb/admin.h>
kadm5_ret_t kadm5_destroy (

void * server_handle)

Kerberos admin APIs

148 V1R4.0 Network Authentication Service Programming

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

Usage
The kadm5_destroy() routine closes a session established by the kadm5_init_with_creds() ,
kadm5_init_with_password() , or kadm5_init_with_skey() routine. The server handle is no longer valid
upon completion of the kadm5_destroy() routine.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. These are
some of the common errors returned by the kadm5_destroy() routine:

Table 9. Common errors returned by the kadm5_destroy() routine

KADM5_BAD_SERVER_HANDLE Server handle is not valid

KADM5_GSS_ERROR GSS-API error

KADM5_RPC_ERROR Communication error

kadm5_free_key_list

Purpose
Frees a list of keys.

Format
#include <skrb/admin.h>
kadm5_ret_t kadm5_free_key_list (

void * server_handle,
krb5_keyblock * keys,
int count)

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

keys
Specifies an array of keyblocks.

count
Specifies the number of entries in the array.

Usage
The kadm5_free_key_list() routine releases the storage allocated for an array of Kerberos keys.

The function return value is always zero.

Kerberos admin APIs

Chapter 3. Kerberos administration programming interfaces 149

kadm5_free_name_list

Purpose
Frees a list of names.

Format
#include <skrb/admin.h>
kadm5_ret_t kadm5_free_name_list (

void * server_handle,
char ** names,
int count)

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

names
Specifies the list of names.

count
Specifies the number of entries in the list.

Usage
The kadm5_free_name_list() routine releases the storage allocated for a list of names.

The function return value is always zero.

kadm5_free_policy_ent

Purpose
Releases storage allocated for a policy entry.

Format
#include <skrb/admin.h>
kadm5_ret_t kadm5_free_policy_ent (

void * server_handle,
kadm5_policy_ent_t entry)

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

Input/Output
entry

Specifies the policy entry to be released.

Kerberos admin APIs

150 V1R4.0 Network Authentication Service Programming

Usage
The kadm5_free_policy_ent() routine releases storage allocated for a policy entry.

The function return value is always zero.

kadm5_free_principal_ent

Purpose
Releases storage allocated for a principal entry.

Format
#include <skrb/admin.h>
kadm5_ret_t kadm5_free_principal_ent (

void * server_handle,
kadm5_principal_ent_t entry)

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

Input/Output
entry

Specifies the principal entry to be released.

Usage
The kadm5_free_principal_ent() routine releases storage allocated for a principal entry.

The function return value is always zero.

kadm5_get_policies

Purpose
Returns a list of policies matching the specified search expression.

Format
#include <skrb/admin.h>
kadm5_ret_t kadm5_get_policies (

void * server_handle,
char * expression,
char *** policies,
int * count)

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

Kerberos admin APIs

Chapter 3. Kerberos administration programming interfaces 151

expression
Specifies the search expression. The maximum string length is 1024 bytes. All policies are listed if
NULL is specified for this parameter.

Output
policies

Returns the list of policy names matching the search expression. The list should be released when it is
no longer needed by calling the kadm5_free_name_list() routine.

count
Returns the number of entries in the list.

Usage
The kadm5_get_policies() routine returns a list of policy names matching a search expression. You must
have LIST authority.

The search expression can include the ″*″ and ″?″ wildcards, where ″*″ represents zero or more
characters, and ″?″ represents a single character. For example, the expression ″*_local″ returns all policy
names that end with ″_local,″ the expression ″def*″ returns all default names that begin with ″def,″ and the
expression ″test_policy?″ returns policy names such as test_policy1 , test_policy2 , and so forth. You can
use ″*″ and ″\?″ to search for a ″*″ or ″?″ character instead of treating the characters as wildcards.

The search string can also contain paired ″[″ and ″]″ characters with one or more characters between the
brackets. A match occurs if a name contains one of the characters between the brackets. For example, the
expression ″[adh]*″ returns all names beginning with ″a,″ ″d,″ or ″h.″ You can use ″\[″ and ″\]″ to search for
a ″[″ or ″]″ character.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. These are
some of the common errors returned by the kadm5_get_policies() routine:

Table 10. Common errors returned by the kadm5_get_policies() routine

KADM5_AUTH_LIST Not authorized to list entries

KADM5_BAD_CLIENT_PARAMS Incorrect parameter specified

KADM5_BAD_SERVER_HANDLE Server handle is not valid

KADM5_GSS_ERROR GSS-API error

KADM5_RPC_ERROR Communication error

kadm5_get_policy

Purpose
Return information from a policy entry in the Kerberos database.

Format
#include <skrb/admin.h>
kadm5_ret_t kadm5_get_policy (

void * server_handle,
char * name,
kadm5_policy_ent_t entry)

Kerberos admin APIs

152 V1R4.0 Network Authentication Service Programming

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

name
Specifies the policy entry to be returned.

Output
entry

Returns the requested information. The storage allocated for the policy entry should be released when
it is no longer needed by calling the kadm5_free_policy_ent() routine.

Usage
The kadm5_get_policy() routine returns information from a policy entry in the Kerberos database. Some
of the fields may not be available depending upon the Kerberos database implementation. You must have
GET authority or the requested policy must be the policy associated with your principal.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. These are
some of the common errors returned by the kadm5_get_policy() routine:

Table 11. Common errors returned by the kadm5_get_policy() routine

KADM5_AUTH_GET Not authorized to get entry

KADM5_BAD_CLIENT_PARAMS Incorrect parameter specified

KADM5_BAD_SERVER_HANDLE Server handle is not valid

KADM5_GSS_ERROR GSS-API error

KADM5_RPC_ERROR Communication error

KADM5_UNK_POLICY Unknown policy

kadm5_get_principal

Purpose
Returns information from a principal entry in the Kerberos database.

Format
#include <skrb/admin.h>
kadm5_ret_t kadm5_get_principal (

void * server_handle,
krb5_principal principal,
kadm5_principal_ent_t entry,
krb5_flags mask)

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

principal
Specifies the principal entry to be returned.

Kerberos admin APIs

Chapter 3. Kerberos administration programming interfaces 153

mask
Specifies the information to be returned. The following flags can be ORed together to define the mask:

Table 12. Flags for mask parameter for kadm5_get_principal()

KADM5_ATTRIBUTES Returns the principal attributes.

KADM5_AUX_ATTRIBUTES Returns the auxilliary attributes.

KADM5_FAIL_AUTH_COUNT Returns the number of failed authentication attempts.

KADM5_KEY_DATA Returns the key data.

KADM5_KVNO Returns the current key version number.

KADM5_LAST_FAILED Returns the time of the last failed authentication.

KADM5_LAST_PWD_CHANGE Returns the last password change time.

KADM5_LAST_SUCCESS Returns the time of the last successful authentication.

KADM5_MAX_LIFE Returns the maximum ticket lifetime.

KADM5_MAX_RLIFE Returns the maximum renewable lifetime.

KADM5_MKVNO Returns the master key version number.

KADM5_MOD_NAME Returns the name of the principal making the last
modification.

KADM5_MOD_TIME Returns the time of the last modification.

KADM5_POLICY Returns the policy name.

KADM5_PRINCIPAL Returns the principal name.

KADM5_PRINC_EXPIRE_TIME Returns the account expiration time.

KADM5_PW_EXPIRATION Returns the password expiration time.

KADM5_PRINCIPAL_FULL_MASK Returns all information.

KADM5_PRINCIPAL_NORMAL_MASK Returns all information except the key data and the tagged
data.

KADM5_TL_DATA Returns the tagged data

Output
entry

Returns the requested information. The storage allocated for the principal entry should be released
when it is no longer needed by calling the kadm5_free_principal_ent() routine.

Usage
The kadm5_get_principal() routine returns information from a principal entry in the Kerberos database.
Some of the fields may not be available, depending upon the Kerberos database implementation. For
KADM5_KEY_DATA, the key contents are not returned. For KADM5_TL_DATA, the returned data is
dependent upon the database implementation. You must have GET authority or the requested principal
entry must be your own entry.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. These are
some of the common errors returned by the kadm5_get_principal() routine:

Table 13. Common errors returned by the kadm5_get_principal() routine

KADM5_AUTH_GET Not authorized to get entry.

KADM5_BAD_CLIENT_PARAMS Incorrect parameter specified.

KADM5_BAD_PRINCIPAL Principal is missing or is not valid.

KADM5_BAD_SERVER_HANDLE Server handle is not valid.

Kerberos admin APIs

154 V1R4.0 Network Authentication Service Programming

|

Table 13. Common errors returned by the kadm5_get_principal() routine (continued)

KADM5_GSS_ERROR GSS-API error.

KADM5_RPC_ERROR Communication error.

KADM5_UNK_PRINCIPAL Unknown principal.

kadm5_get_principals

Purpose
Returns a list of principals matching the specified search expression.

Format
#include <skrb/admin.h>
kadm5_ret_t kadm5_get_principals (

void *server_handle,
char *expression,
char ***princs,
int *count)

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

expression
Specifies the search expression. The maximum string length is 1024 bytes. All principals are listed if
NULL is specified for this parameter.

Output
princs

Returns the list of principal names matching the search expression. The list should be released when
it is no longer needed by calling the kadm5_free_name_list() routine.

count
Returns the number of entries in the list.

Usage
The kadm5_get_principals() routine returns a list of principal names matching a search expression. You
must have LIST authority to list entries in the Kerberos database. The list of matching principal names
may be restricted by additional database authorization checking depending upon the database
implementation.

The search expression can include the ″*″ and ″?″ wildcards where ″*″ represents zero or more characters
and ″?″ represents a single character. For example, the expression ″*/admin@*″ returns all principal
names that end with ″/admin,″ the expression ″rwh*″ returns all principal names that begin with ″rwh,″ and
the expression ″test_client?@*″ returns principal names such as test_client1 , test_client2 , and so forth.
You can use ″*″ and ″\?″ to search for a ″*″ or ″?″ character instead of treating the characters as
wildcards.

The search string can also contain paired ″[″ and ″]″ characters with one or more characters between the
brackets. A match occurs if a name contains one of the characters between the brackets. For example, the
expression ″*/[ad]*″ returns all names containing ″/a″ and ″/d″ while the expression ″[ckr]*″ returns all
names beginning with ″c,″ ″k,″ or ″r.″ You can use ″\[″ and ″\]″ to search for a ″[″ or ″]″ character.

Kerberos admin APIs

Chapter 3. Kerberos administration programming interfaces 155

|
|
|
|

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. These are
some of the common errors returned by the kadm5_get_principals() routine:

Table 14. Common errors returned by the kadm5_get_principals() routine

KADM5_AUTH_LIST Not authorized to list entries.

KADM5_BAD_CLIENT_PARAMS Incorrect parameter specified.

KADM5_BAD_SERVER_HANDLE Server handle is not valid.

KADM5_GSS_ERROR GSS-API error.

KADM5_RPC_ERROR Communication error.

KADM5_TOO_MANY_MATCHES Too many database entries match the search expression.

kadm5_get_privs

Purpose
Returns the administration privileges for the authenticated client.

Format
#include <skrb/admin.h>

kadm5_ret_t kadm5_get_privs (
void * server_handle,
krb5_flags * privs)

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

Output
privs

Returns the administration privileges bit mask. The following flags are defined:

v KADM5_PRIV_ADD - Authorized to add an entry to the database

v KADM5_PRIV_CHPW - Authorized to change the password for a principal

v KADM5_PRIV_DELETE - Authorized to delete an entry from the database

v KADM5_PRIV_GET - Authorized to get an entry from the database

v KADM5_PRIV_LIST - Authorized to list the names of database entries

v KADM5_PRIV_MODIFY - Authorized to modify an entry in the database

v KADM5_PRIV_SETKEY - Authorized to set the key for a principal

Usage
The kadm5_get_privs() routine returns the administrative privileges for the authenticated client. Some of
the privileges may not be implemented, depending upon the Kerberos database implementation. Additional
authorization checking may be performed, depending upon the requested administration function or the
database implementation.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. These are
some of the common errors returned by the kadm5_get_privs() routine:

Kerberos admin APIs

156 V1R4.0 Network Authentication Service Programming

|

|

|

|

|
|
|
|
|

|

|

|
|

|

|
|

|

|

|

|

|

|

|

|

|
|
|
|

|
|

Table 15. Common errors returned by the kadm5_get_principals() routine

KADM5_BAD_CLIENT_PARAMS Incorrect parameter specified.

KADM5_BAD_SERVER_HANDLE Server handle is not valid.

KADM5_GSS_ERROR GSS-API error.

KADM5_RPC_ERROR Communication error.

kadm5_init_with_creds

Purpose
Establish a session with the Kerberos administration server using a credentials cache for authentication.

Format
#include <skrb/admin.h>
kadm5_ret_t kadm5_init_with_creds (

char * client_name,
krb5_ccache ccache,
char * service_name,
kadm5_config_params * config_params,
krb5_ui_4 struct_version,
krb5_ui_4 api_version,
void ** server_handle)

Parameters

Input
client_name

Specifies the client name for the session. The local realm is used if a fully-qualified name is not
specified.

ccache
Specifies the credentials cache for the session. The credentials cache must contain an initial ticket for
the administration service. This ticket must be valid for at least the next 10 minutes.

service_name
Specifies the server name for the session. This is usually kadmin/admin . The realm name is obtained
from the configuration parameters if a fully-qualified name is not specified.

config_params
Specifies configuration parameter override values. Specify NULL for this parameter if no overrides are
needed. These mask values may be set:

Table 16. Mask values for config_params parameter for kadm5_init_with_creds()

KADM5_CONFIG_PROFILE The profile field contains the name of the Kerberos profile to be
used. The default Kerberos profile is used if this value is not
specified.

KADM5_CONFIG_REALM The realm field contains the name of the administration server
realm. The client realm is used if this value is not specified.

Kerberos admin APIs

Chapter 3. Kerberos administration programming interfaces 157

||

||

||

||

||

Table 16. Mask values for config_params parameter for kadm5_init_with_creds() (continued)

KADM5_CONFIG_ADMIN_SERVER The admin_server field contains the name of the host system
running the Kerberos administration server in the format
host:port. The value of the kadmind_port field is used for the
port number if the port is not explicitly specified. The host name
is obtained from the Kerberos profile if neither
KADM5_CONFIG_ADMIN_SERVER nor
KADM5_CONFIG_ADMIN_SERVER_LIST is specified. The
admin_server field is used if both
KADM5_CONFIG_ADMIN_SERVER and
KADM5_CONFIG_ADMIN_SERVER_LIST are specified.

KADM5_CONFIG_ADMIN_SERVER_LIST The admin_server_list field contains a list of Kerberos
administration servers. Each list entry is in the format host:port
and the list is terminated by a NULL address. The value of the
kadmind_port field is used for the port number if an entry does
not explicitly specify the port. The host name is obtained from
the Kerberos profile if neither
KADM5_CONFIG_ADMIN_SERVER nor
KADM5_CONFIG_ADMIN_SERVER_LIST is specified. The
admin_server field is used if both
KADM5_CONFIG_ADMIN_SERVER and
KADM5_CONFIG_ADMIN_SERVER_LIST are specified.

KADM5_CONFIG_KADMIND_PORT The kadmind_port field contains the port number of the Kerberos
administration server and defaults to 749.

struct_version
Specifies the structure version and should be set to KADM5_STRUCT_VERSION to use the current
structure version.

api_version
Specifies the API version and should be set to KADM5_API_VERSION to use the current API version.

Output
server_handle

Returns the opaque server handle representing the session with the administration server.

Usage
The kadm5_init_with_creds() routine establishes a session with the Kerberos administration server using
the credentials cache supplied by the caller. The credentials cache must contain an initial ticket to the
administration service. The kadm5_destroy() routine should be called to end the session and release
resources.

The service name can be kadmin/admin or kadmin/changepw . The kadmin/admin service is the
administration service, and the kadmin/changepw service is the password change service. All of the
administration functions are available using kadmin/admin , and their use is controlled by the privileges
granted to the authenticating principal. Only the following services are available using kadmin/changepw
and their use requires the principal to be the same as the authenticating principal:
kadm5_chpass_principal , kadm5_randkey_principal , kadm5_get_principal , and kadm5_get_policy .

The Kerberos administration API does not establish its own signal handlers since this could conflict with
the application’s use of signals (signal handlers have a process-wide scope). Consequently, the application
should set up its own signal handler for the SIGPIPE signal. The action routine can be SIG_IGN unless
the application needs to perform its own processing for a broken pipe.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. These are
some of the common errors returned by the kadm5_init_with_creds() routine:

Kerberos admin APIs

158 V1R4.0 Network Authentication Service Programming

Table 17. Common errors returned by the kadm5_init_with_creds() routine

KADM5_BAD_CLIENT_PARAMS Incorrect parameters specified

KADM5_GSS_ERROR GSS-API error

KADM5_RPC_ERROR Communication error

KADM5_NO_SRV No administration server is defined for the target realm

KADM5_SECURE_PRINC_MISSING Administration server principal is not defined

kadm5_init_with_password

Purpose
Establishes a session with the Kerberos administration server using a password for authentication.

Format
#include <skrb/admin.h>
kadm5_ret_t kadm5_init_with_password (

char * client_name,
char * password,
char * service_name,
kadm5_config_params * config_params,
krb5_ui_4 struct_version,
krb5_ui_4 api_version,
void ** server_handle)

Parameters

Input
client_name

Specifies the client name for the session. The local realm is used if a fully-qualified name is not
specified.

password
Specifies the client password. Specify NULL for this parameter to prompt the user to enter the
password.

service_name
Specifies the server name for the session. This is usually kadmin/admin . The realm name is obtained
from the configuration parameters if a fully-qualified name is not specified.

config_params
Specifies configuration parameter override values. Specify NULL for this parameter if no overrides are
needed. These mask values may be set:

Table 18. Mask values for config_params parameter for kadm5_init_with_password()

KADM5_CONFIG_PROFILE The profile field contains the name of the Kerberos profile to be
used. The default Kerberos profile is used if this value is not
specified.

KADM5_CONFIG_REALM The realm field contains the name of the administration server
realm. The client realm is used if this value is not specified.

Kerberos admin APIs

Chapter 3. Kerberos administration programming interfaces 159

Table 18. Mask values for config_params parameter for kadm5_init_with_password() (continued)

KADM5_CONFIG_ADMIN_SERVER The admin_server field contains the name of the host system
running the Kerberos administration server in the format
host:port. The value of the kadmind_port field is used for the
port number if the port is not explicitly specified. The host name
is obtained from the Kerberos profile if neither
KADM5_CONFIG_ADMIN_SERVER nor
KADM5_CONFIG_ADMIN_SERVER_LIST is specified. The
admin_server field is used if both
KADM5_CONFIG_ADMIN_SERVER and
KADM5_CONFIG_ADMIN_SERVER_LIST are specified.

KADM5_CONFIG_ADMIN_SERVER_LIST The admin_server_list field contains a list of Kerberos
administration servers. Each list entry is in the format host:port
and the list is terminated by a NULL address. The value of the
kadmind_port field is used for the port number if an entry does
not explicitly specify the port. The host name is obtained from
the Kerberos profile if neither
KADM5_CONFIG_ADMIN_SERVER nor
KADM5_CONFIG_ADMIN_SERVER_LIST is specified. The
admin_server field is used if both
KADM5_CONFIG_ADMIN_SERVER and
KADM5_CONFIG_ADMIN_SERVER_LIST are specified.

KADM5_CONFIG_KADMIND_PORT The kadmind_port field contains the port number of the Kerberos
administration server and defaults to 749.

struct_version
Specifies the structure version and should be set to KADM5_STRUCT_VERSION to use the current
structure version.

api_version
Specifies the API version and should be set to KADM5_API_VERSION to use the current API version.

Output
server_handle

Returns the opaque server handle representing the session with the administration server.

Usage
The kadm5_init_with_password() routine establishes a session with the Kerberos administration server.
The supplied password is used to obtain an initial ticket for the administration service. The
kadm5_destroy() routine should be called to end the session and release resources.

The service name can be kadmin/admin or kadmin/changepw . The kadmin/admin service is the
administration service, and the kadmin/changepw service is the password change service. All of the
administration functions are available using kadmin/admin and their use is controlled by the privileges
granted to the authenticating principal. Only the following services are available using kadmin/changepw
and their use requires the principal to be the same as the authenticating principal:
kadm5_chpass_principal , kadm5_randkey_principal , kadm5_get_principal , and kadm5_get_policy .

The Kerberos administration API does not establish its own signal handlers because this could conflict with
the application’s use of signals (signal handlers have a process-wide scope). Consequently, the application
should set up its own signal handler for the SIGPIPE signal. The action routine can be SIG_IGN unless
the application needs to perform its own processing for a broken pipe.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. These are
some of the common errors returned by the kadm5_init_with_password() routine:

Kerberos admin APIs

160 V1R4.0 Network Authentication Service Programming

Table 19. Common errors returned by the kadm5_init_with_password() routine

KADM5_BAD_CLIENT_PARAMS Incorrect parameters specified

KADM5_BAD_PASSWORD Incorrect password specified

KADM5_GSS_ERROR GSS-API error

KADM5_RPC_ERROR Communication error

KADM5_NO_SRV No administration server is defined for the target realm

KADM5_SECURE_PRINC_MISSING Administration server principal is not defined

kadm5_init_with_skey

Purpose
Establish a session with the Kerberos administration server using a key table for authentication.

Format
#include <skrb/admin.h>
kadm5_ret_t kadm5_init_with_skey (

char * client_name,
char * keytab_name,
char * service_name,
kadm5_config_params * config_params,
krb5_ui_4 struct_version,
krb5_ui_4 api_version,
void ** server_handle)

Parameters

Input
client_name

Specifies the client name for the session. The local realm is used if a fully-qualified name is not
specified.

keytab_name
Specifies the key table name. The key table must contain the current key for the client.

service_name
Specifies the server name for the session. This is usually kadmin/admin . The realm name is obtained
from the configuration parameters if a fully-qualified name is not specified.

config_params
Specifies configuration parameter override values. Specify NULL for this parameter if no overrides are
needed. These mask values may be set:

Table 20. Mask values for config_params parameter for kadm5_init_with_skey()

KADM5_CONFIG_PROFILE The profile field contains the name of the Kerberos profile to be
used. The default Kerberos profile is used if this value is not
specified.

KADM5_CONFIG_REALM The realm field contains the name of the administration server
realm. The client realm is used if this value is not specified.

Kerberos admin APIs

Chapter 3. Kerberos administration programming interfaces 161

Table 20. Mask values for config_params parameter for kadm5_init_with_skey() (continued)

KADM5_CONFIG_ADMIN_SERVER The admin_server field contains the name of the host system
running the Kerberos administration server in the format
host:port. The value of the kadmind_port field is used for the
port number if the port is not explicitly specified. The host name
is obtained from the Kerberos profile if neither
KADM5_CONFIG_ADMIN_SERVER nor
KADM5_CONFIG_ADMIN_SERVER_LIST is specified. The
admin_server field is used if both
KADM5_CONFIG_ADMIN_SERVER and
KADM5_CONFIG_ADMIN_SERVER_LIST are specified.

KADM5_CONFIG_ADMIN_SERVER_LIST The admin_server_list field contains a list of Kerberos
administration servers. Each list entry is in the format host:port
and the list is terminated by a NULL address. The value of the
kadmind_port field is used for the port number if an entry does
not explicitly specify the port. The host name is obtained from
the Kerberos profile if neither
KADM5_CONFIG_ADMIN_SERVER nor
KADM5_CONFIG_ADMIN_SERVER_LIST is specified. The
admin_server field is used if both
KADM5_CONFIG_ADMIN_SERVER and
KADM5_CONFIG_ADMIN_SERVER_LIST are specified.

KADM5_CONFIG_KADMIND_PORT The kadmind_port field contains the port number of the Kerberos
administration server and defaults to 749.

struct_version
Specifies the structure version and should be set to KADM5_STRUCT_VERSION to use the current
structure version.

api_version
Specifies the API version and should be set to KADM5_API_VERSION to use the current API version.

Output
server_handle

Returns the opaque server handle representing the session with the administration server.

Usage
The kadm5_init_with_skey() routine establishes a session with the Kerberos administration server. The
key table is used to obtain an initial ticket for the administration service. The kadm5_destroy() routine
should be called to end the session and release resources.

The service name can be kadmin/admin or kadmin/changepw . The kadmin/admin service is the
administration service, and the kadmin/changepw service is the password change service. All of the
administration functions are available using kadmin/admin and their use is controlled by the privileges
granted to the authenticating principal. Only the following services are available using kadmin/changepw
and their use requires the principal to be the same as the authenticating principal:
kadm5_chpass_principal , kadm5_randkey_principal , kadm5_get_principal , and kadm5_get_policy .

The Kerberos administration API does not establish its own signal handlers because this could conflict with
the application’s use of signals (signal handlers have a process-wide scope). Consequently, the application
should set up its own signal handler for the SIGPIPE signal. The action routine can be SIG_IGN unless
the application needs to perform its own processing for a broken pipe.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. These are
some of the common errors returned by the kadm5_init_with_skey() routine:

Kerberos admin APIs

162 V1R4.0 Network Authentication Service Programming

Table 21. Common errors returned by the kadm5_init_with_skey() routine

KADM5_BAD_CLIENT_PARAMS Incorrect parameters specified

KADM5_BAD_PASSWORD Incorrect password specified

KADM5_GSS_ERROR GSS-API error

KADM5_RPC_ERROR Communication error

KADM5_NO_SRV No administration server is defined for the target realm

KADM5_SECURE_PRINC_MISSING Administration server principal is not defined

kadm5_modify_policy

Purpose
Modifies a policy entry in the Kerberos database.

Format
#include <skrb/admin.h>
kadm5_ret_t kadm5_modify_policy (

void * server_handle,
kadm5_policy_ent_t entry,
krb5_flags mask)

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

entry
Specifies the information for the policy entry. The policy name is obtained from the policy field of the
entry (the KADM5_POLICY mask flag must not be set since you cannot change the policy name).

mask
Specifies the fields in the krb5_policy_ent_t that are to be used to modify the policy entry. The
following flags can be ORed together to define the mask:

v KADM5_PW_HISTORY_NUM - the password history count is set

v KADM5_PW_MIN_CLASSES - the minimum number of password character classes is set

v KADM5_PW_MIN_LENGTH - the minimum password length is set

v KADM5_PW_MIN_LIFE - the minimum password lifetime is set

v KADM5_PW_MAX_LIFE - the maximum password lifetime is set

Usage
The kadm5_modify_policy() routine modifies a policy entry in the Kerberos database. You must have
MODIFY authority.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. These are
some of the common errors returned by the kadm5_modify_policy() routine:

Table 22. Common errors returned by the kadm5_modify_policy() routine

KADM5_AUTH_MODIFY Not authorized to modify an entry

KADM5_BAD_CLASS Character class count is not valid

KADM5_BAD_CLIENT_PARAMS Incorrect parameter specified

Kerberos admin APIs

Chapter 3. Kerberos administration programming interfaces 163

Table 22. Common errors returned by the kadm5_modify_policy() routine (continued)

KADM5_BAD_SERVER_HANDLE Server handle is not valid

KADM5_BAD_HISTORY Password history count is not valid

KADM5_BAD_LENGTH Minimum password length is not valid

KADM5_BAD_MASK Incorrect policy modification mask specified

KADM5_BAD_MIN_PASS_LIFE Minimum password lifetime is not valid

KADM5_BAD_POLICY Policy name is not valid

KADM5_GSS_ERROR GSS-API error

KADM5_RPC_ERROR Communication error

KADM5_UNK_POLICY Unknown policy

kadm5_modify_principal

Purpose
Modifies a principal entry in the Kerberos database.

Format
#include <skrb/admin.h>
kadm5_ret_t kadm5_modify_principal (

void * server_handle,
kadm5_principal_ent_t entry,
krb5_flags mask)

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

entry
Specifies the information for the principal entry. The principal name is obtained from the principal field
of the entry (the KADM5_PRINCIPAL mask flag must not be set since you cannot change the principal
name using the kadm5_modify_principal() routine).

mask
Specifies the fields in the krb5_principal_ent_t that are to be used to modify the principal entry. The
following flags can be ORed together to define the mask:

Table 23. Flags for mask parameter for kadm5_modify_principal()

KADM5_ATTRIBUTES The principal attributes are set.

KADM5_FAIL_AUTH_COUNT The number of failed authentication attempts is set.

KADM5_KVNO The current key version number is set.

KADM5_MAX_LIFE The maximum ticket lifetime is set.

KADM5_MAX_RLIFE The maximum renewable lifetime is set.

KADM5_POLICY The policy name is set.

KADM5_POLICY_CLR The policy name is cleared.

KADM5_PRINC_EXPIRE_TIME The account expiration time is set.

KADM5_PW_EXPIRATION The password expiration time is set.

Kerberos admin APIs

164 V1R4.0 Network Authentication Service Programming

Table 23. Flags for mask parameter for kadm5_modify_principal() (continued)

KADM5_TL_DATA The tagged data is set.

Usage
The kadm5_modify_principal() routine modifies a principal entry in the Kerberos database. You must
have MODIFY authority. The principal name and password cannot be changed using
kadm5_modify_principal() . The fields that can be modified are dependent upon the Kerberos database
implementation.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. These are
some of the common errors returned by the kadm5_modify_principal() routine:

Table 24. Common errors returned by the kadm5_modify_principal() routine

KADM5_AUTH_MODIFY Not authorized to modify an entry

KADM5_BAD_CLIENT_PARAMS Incorrect parameters specified

KADM5_BAD_MASK Incorrect principal modification mask specified

KADM5_BAD_SERVER_HANDLE Server handle is not valid

KADM5_GSS_ERROR GSS-API error

KADM5_RPC_ERROR Communication error

KADM5_UNK_POLICY Specified policy does not exist

KADM5_UNK_PRINC Specified principal does not exist

kadm5_randkey_principal

Purpose
Generates a new set of random keys for a principal.

Format
#include <skrb/admin.h>
kadm5_ret_t kadm5_randkey_principal (

void * server_handle,
krb5_principal principal,
krb5_keyblock ** new_keys,
int * n_keys)

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

principal
Specifies the principal.

Output
new_keys

Returns an array of Kerberos keys generated as a result of this request. The kadm5_free_key_list()
routine should be called to release the keys when they are no longer needed. Specify NULL for this
parameter if you don’t need to have the keys returned.

Kerberos admin APIs

Chapter 3. Kerberos administration programming interfaces 165

n_keys
Returns the number of keys in the returned key list. You can specify NULL for this parameter if you
specified NULL for the new_keys parameter.

Usage
The kadm5_randkey_principal() routine generates a new set of random keys for the specified principal.
You must have CHANGEPW authority, the specified principal must be your own principal, or the
administration session must be with the kadmin/changepw service.

The kadm5_randkey_principal() routine generates an encryption key for each encryption type supported
by the Kerberos administration server. Use the kadm5_randkey_principal_3() routine if you want to
generate encryption keys for a subset of the available encryption types.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. These are
some of the common errors returned by the kadm5_randkey_principal() routine:

Table 25. Common errors returned by the kadm5_randkey_principal() routine

KADM5_AUTH_CHANGEPW Not authorized to change the password

KADM5_BAD_CLIENT_PARAMS Incorrect parameter specified

KADM5_BAD_SERVER_HANDLE Server handle is not valid

KADM5_GSS_ERROR GSS-API error

KADM5_PASS_TOOSOON The minimum password lifetime has not elapsed

KADM5_PROTECT_PRINCIPAL The principal is protected and may not be modified

KADM5_RPC_ERROR Communication error

KADM5_UNK_PRINCIPAL Unknown principal

kadm5_randkey_principal_3

Purpose
Generates a new set of random keys for a principal.

Format
#include <skrb/admin.h>

kadm5_ret_t kadm5_randkey_principal_3 (
void * server_handle,
krb5_principal principal,
krb5_boolean keepold,
int n_ks_entries,
krb5_key_salt_tuple * ks_entries,
krb5_keyblock ** new_keys,
int * n_keys);

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

principal
Specifies the principal.

Kerberos admin APIs

166 V1R4.0 Network Authentication Service Programming

|
|
|

|

|

|

|

|
|
|
|
|
|
|
|
|
|

|

|

|
|

|
|

keepold
Specifies whether to keep the old key entries.

n_ks_entries
Specifies the number of key-salt entries.

ks_entries
Specifies an array of key-salt entries.

Output
new_keys

Returns an array of Kerberos keys generated as a result of this request. The kadm5_free_key_list()
routine should be called to release the keys when they are no longer needed. Specify NULL for this
parameter if you don’t need to have the keys returned.

n_keys
Returns the number of keys in the returned key list. You can specify NULL for this parameter if you
specified NULL for the new_keys parameter.

Usage
The kadm5_randkey_principal_3() routine generates a new set of random keys for the specified
principal. You must have CHANGEPW authority, the specified principal must be your own principal, or the
administration session must be with the kadmin/changepw service.

The kadm5_randkey_principal_3() routine allows the specification of the encryption types used to
generate encryption keys. It is the same as the kadm5_randkey_principal() routine if no key-salt entries
are provided. An error is returned if an unsupported encryption type or salt type is specified.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. These are
some of the common errors returned by the kadm5_randkey_principal_3() routine:

Table 26. Common errors returned by the kadm5_randkey_principal() routine

KADM5_AUTH_CHANGEPW Not authorized to change the password.

KADM5_BAD_CLIENT_PARAMS Incorrect parameter specified.

KADM5_BAD_SERVER_HANDLE Server handle is not valid.

KADM5_GSS_ERROR GSS-API error.

KADM5_PASS_TOOSOON The minimum password lifetime has not elapsed.

KADM5_PROTECT_PRINCIPAL The principal is protected and may not be modified.

KADM5_RPC_ERROR Communication error.

KADM5_UNK_PRINCIPAL Unknown principal.

kadm5_rename_principal

Purpose
Renames a principal entry in the Kerberos database.

Format
#include <skrb/admin.h>
kadm5_ret_t kadm5_rename_principal (

void * server_handle,
krb5_principal old_name,
krb5_principal new_name)

Kerberos admin APIs

Chapter 3. Kerberos administration programming interfaces 167

|
|

|
|

|
|

|

|
|
|
|

|
|
|

|

|
|
|

|
|
|

|
|

||

||

||

||

||

||

||

||

||

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

old_name
Specifies the name of the entry to be renamed.

new_name
Specifies the new name for the entry.

Usage
The kadm5_rename_principal() routine renames a principal entry in the Kerberos database. You must
have both ADD and DELETE authority.

Since the principal name is often used as part of the password salt, you should change the password for
the principal after the entry is renamed. Some implementations of the Kerberos administration server do
not allow a principal to be renamed if the principal name is used in the password salt. In this case, you
must delete the existing principal entry and add the new principal entry using the
kadm5_delete_principal() and kadm5_create_principal() routines.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. These are
some of the common errors returned by the kadm5_rename_principal() routine:

Table 27. Common errors returned by the kadm5_rename_principal() routine

KADM5_AUTH_ADD Not authorized to add an entry

KADM5_AUTH_DELETE Not authorized to delete an entry

KADM5_BAD_CLIENT_PARAMS Incorrect parameter specified

KADM5_BAD_SERVER_HANDLE Server handle is not valid

KADM5_DUP Duplicate entry

KADM5_GSS_ERROR GSS-API error

KADM5_NO_RENAME_SALT Password salt type does not allow the principal to be renamed

KADM5_RPC_ERROR Communication error

KADM5_UNK_PRINCIPAL Unknown principal

kadm5_setkey_principal

Purpose
Sets the key for a principal entry in the Kerberos database

Format
#include <skrb/admin.h>
kadm5_ret_t kadm5_setkey_principal (

void * server_handle,
krb5_principal principal,
krb5_keyblock * keys,
int n_keys)

Kerberos admin APIs

168 V1R4.0 Network Authentication Service Programming

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

principal
Specifies the principal entry.

keys
Specifies an array of keys.

n_keys
Specifies the number of entries in the key array.

Usage
The kadm5_setkey_principal() routine sets the keys for a principal entry in the Kerberos database. You
must have SETKEY authority. No policy checks are performed on the new keys. The supplied keys replace
the current encryption keys for the principal.

The key array must contain an entry for each unique encryption key that can be used by the principal.
However, there must not be duplicate entries for encryption types that use the same encryption key. For
example, encryption types ENCTYPE_DES_CBC_CRC and ENCTYPE_DES_CBC_MD5 both use the
same 56-bit DES encryption key. You can specify either ENCTYPE_DES_CBC_CRC or
ENCTYPE_DES_CBC_MD5, but you cannot specify both.

The kadm5_setkey_principal() routine use the default salt for each encryption key. Use the
kadm5_setkey_principal_3() routine if you want to specify a different salt.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. These are
some of the common errors returned by the kadm5_setkey_principal() routine:

Table 28. Common errors returned by the kadm5_setkey_principal() routine

KADM5_AUTH_SETKEY Not authorized to set the keys for the entry

KADM5_BAD_CLIENT_PARAMS Incorrect parameter specified

KADM5_BAD_SERVER_HANDLE Server handle is not valid

KADM5_GSS_ERROR GSS-API error

KADM5_PROTECT_PRINCIPAL Protected principal cannot be modified

KADM5_RPC_ERROR Communication error

KADM5_SETKEY_DUP_ENCTYPES Duplicate encryption key types specified

KADM5_UNK_PRINCIPAL Unknown principal

kadm5_setkey_principal_3

Purpose
Sets the key for a principal entry in the Kerberos database

Format
#include <skrb/admin.h>

kadm5_ret_t kadm5_setkey_principal_3 (
void * server_handle,

Kerberos admin APIs

Chapter 3. Kerberos administration programming interfaces 169

|
|

|

|

|

|

|
|
|
|

krb5_principal principal,
krb5_boolean keepold,
int n_ks_entries,
krb5_key_salt_tuple * ks_entries,
krb5_keyblock * keys,
int n_keys

Parameters

Input
server_handle

Specifies the server handle for the session with the administration server.

principal
Specifies the principal entry.

keepold
Specifies whether to keep the old key entries.

n_ks_entries
Specifies the number of key-salt entries.

ks_entries
Specifies an array of key-salt entries.

keys
Specifies an array of keys.

n_keys
Specifies the number of entries in the key array.

Usage
The kadm5_setkey_principal(_3) routine sets the keys for a principal entry in the Kerberos database. You
must have SETKEY authority. No policy checks are performed on the new keys. The supplied keys replace
the current encryption keys for the principal.

The key array must contain an entry for each unique encryption key that can be used by the principal.
However, there must not be duplicate entries for encryption types that use the same encryption key. For
example, encryption types ENCTYPE_DES_CBC_CRC and ENCTYPE_DES_CBC_MD5 both use the
same 56-bit DES encryption key. You can specify either ENCTYPE_DES_CBC_CRC or
ENCTYPE_DES_CBC_MD5, but you cannot specify both.

The key-salt entries are used to specify the salt associated with each key. The number of key-salt entries
must be the same as the number of keys and the encryption type in each key-salt entry must match the
encryption type of the corresponding key. The kadm5_setkey_principal_3() routine is the same as the
kadm5_setkey_principal() routine if no key-salt entries are specified.

The function return value is zero if no errors occurred. Otherwise, it is a Kerberos error code. These are
some of the common errors returned by the kadm5_setkey_principal_3() routine:

Table 29. Common errors returned by the kadm5_setkey_principal() routine

KADM5_AUTH_SETKEY Not authorized to set the keys for the entry.

KADM5_BAD_CLIENT_PARAMS Incorrect parameter specified.

KADM5_BAD_SERVER_HANDLE Server handle is not valid.

KADM5_GSS_ERROR GSS-API error.

KADM5_PROTECT_PRINCIPAL Protected principal cannot be modified.

KADM5_RPC_ERROR Communication error.

Kerberos admin APIs

170 V1R4.0 Network Authentication Service Programming

|
|
|
|
|
|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|
|

|
|
|
|
|

|
|
|
|

|
|

||

||

||

||

||

||

||

Table 29. Common errors returned by the kadm5_setkey_principal() routine (continued)

KADM5_SETKEY_DUP_ENCTYPES Duplicate encryption key types specified.

KADM5_SETKEY3_ETYPE_MISMATCH The key-salt entries do not match the key entries.

KADM5_UNK_PRINCIPAL Unknown principal.

Kerberos admin APIs

Chapter 3. Kerberos administration programming interfaces 171

|

||

||

||

Kerberos admin APIs

172 V1R4.0 Network Authentication Service Programming

Part 2. GSS-API interfaces

This Part introduces the GSS-API interfaces and describes each one. These topics are covered:

v Introduction to GSS-API

– General information about GSS-API

– GSS-API services

– Error handling

– Data types

– GSS-API version compatibility

– Interoperability with Microsoft Windows 2000 SSPI

v GSS-API programming interfaces

v GSS-API programming interfaces - Kerberos mechanism.

© Copyright IBM Corp. 2000, 2002 173

174 V1R4.0 Network Authentication Service Programming

Chapter 4. Introduction to GSS-API

This chapter contains general information about the Generic Security Service Application Programming
Interface (GSS-API) defined in Internet RFC 2078, Generic Security Service Application Program Interface,
Version 2 and Internet RFC 2744, Generic Security Service API, Version 2: C-bindings. It also includes an
overview of error handling, data types, and calling conventions.

General information about GSS-API
The Generic Security Service Application Programming Interface (GSS-API) provides security services to
applications using peer-to-peer communications. Using GSS-API routines, applications can perform these
operations:
v Enable an application to determine another application’s user identification
v Enable an application to delegate access rights to another application
v Apply security services, such as confidentiality and integrity, on a per-message basis.

A secure connection between two communicating applications is represented by a data structure called a
security context. The application that establishes the secure connection is called the context initiator. The
context initiator is similar to a remote procedure call (RPC) client. The application that accepts the secure
connection is the context acceptor. The context acceptor is similar to an RPC server. The GSS-API
routines use tokens as input and output values. The communicating applications are responsible for
exchanging these tokens using whatever communication channels are appropriate.

There are four stages involved in using the GSS-API:

1. The context initiator acquires a credential for proving its identity to other processes. Similarly, the
context acceptor acquires a credential for accepting a security context. Either application may omit this
credential acquisition and use its default credential.

Each application uses credentials to establish its global identity. The global identity can be, but is not
necessarily, related to the local user name the application runs under. Credentials can be obtained
from an existing login context or can be created using a principal name and key obtained from a key
table.

2. The communicating applications establish a joint security context by exchanging authentication tokens.

The security context is a pair of GSS-API data structures containing information that is shared between
the communicating applications. The information describes the state of each application. This security
context is required for per-message security services.

To establish a security context, the context initiator calls the gss_init_sec_context() routine to get a
token. The token is cryptographically protected, opaque data. The context initiator transfers the token
to the context acceptor, which in turn passes the token to the gss_accept_sec_context() routine to
decode and extract the shared information.

As part of establishing the security context, the context initiator is authenticated to the context
acceptor. The context initiator can require the context acceptor to authenticate itself in return by
requesting mutual authentication.

The context initiator can delegate rights to allow the context acceptor to act as its agent. Delegation
means the context initiator gives the context acceptor the ability to initiate additional security contexts
as an agent of the context initiator. To delegate, the context initiator sets a flag on the call to the
gss_init_sec_context() routine indicating that it wants to delegate, and sends the returned token in
the normal way to the context acceptor. The acceptor passes this token to the
gss_accept_sec_context() routine, which generates a delegated credential. The context acceptor can
use the returned credential to initiate additional security contexts with other applications.

3. The applications exchange protected messages and data.

The applications can call GSS-API routines to protect data exchanged in messages. GSS-API treats
application data as arbitrary octet strings. The GSS-API message security services can provide either

© Copyright IBM Corp. 2000, 2002 175

|
|
|
|

integrity and authentication of data origin or confidentiality, integrity, and authentication of data origin.
The capability to provide data confidentiality is dependent upon the capabilities of the underlying data
encryption support.

4. When the applications have finished communicating, either one may instruct GSS-API to delete the
security context.

There are two types of GSS-API routines:

v Standard GSS-API routines, which are defined in Internet RFC 2078, Generic Security Service
Application Program Interface, Version 2 and Internet RFC 2744, Generic Security Service API Version
2: C bindings. These routines have the prefix gss_ .

v Kerberos extensions to the GSS-API. These are additional routines that enable an application to use
Kerberos security services. These routines have the prefix gss_krb5 .

GSS-API services

Message integrity and confidentiality
GSS-API provides message security services. Depending upon the underlying security mechanism
capabilities, message integrity and message confidentiality services are available. When a security context
is established, the GSS-API routines return two flags to indicate the set of message protection security
services available for the context:

v The GSS_C_INTEG_FLAG indicates whether message integrity and origin authenticity services are
available

v The GSS_C_CONF_FLAG indicates whether message confidentiality services are available. This flag is
never TRUE unless the GSS_C_INTEG_FLAG is also TRUE.

GSS-API callers that want message security services should check the values of these flags at context
establishment time and must be aware that a returned FALSE value means that the invocation of the
gss_get_mic() and gss_wrap() routines applies no cryptographic protection to user data messages.

The GSS-API message integrity and data origin authentication services provide assurance to a receiving
caller that protection was applied to a message by the caller’s peer on the security context, corresponding
to the entities named during context establishment. The GSS-API message confidentiality service provides
assurance to a sending caller that the message’s content is protected from access by entities other than
the context’s named peer.

Message replay and sequencing
GSS-API also provides message sequencing and replay detection services. These selectable protection
features are distinct from the replay detection and sequencing features supplied by the context
establishment operation. The presence or absence of context-level replay or sequencing is a function of
the underlying security mechanism layer capabilities and is not selected or omitted as a caller option.

The caller initiating a context provides two flags to specify whether the use of message replay detection
and sequencing features is wanted on the context being established:

v GSS_C_REPLAY_FLAG indicates whether message replay detection services are to be used

v GSS_C_SEQUENCE_FLAG indicates whether message sequencing services are to be used.

The GSS-API implementation at the initiator system can determine whether these services are supported
as a function of the mechanism type. When enabled, these services provide recipients with indicators as a
result of GSS-API processing on incoming messages, identifying whether those messages were detected
as duplicate or out-of-sequence. Detection of such events does not prevent a suspect message from being
provided to a recipient; the appropriate course of action on a suspect message is a matter of caller policy.

Intro to GSS-API

176 V1R4.0 Network Authentication Service Programming

When replay detection is enabled, the possible major_status returns for well-formed and correctly signed
messages are:

v GSS_S_COMPLETE indicates that the message was within the window (of time or sequence space)
allowing replay events to be detected, and the message was not a replay of a previously-processed
message within that window.

v GSS_S_DUPLICATE_TOKEN indicates that the cryptographic check value on the received message
was correct, but the message was recognized as a duplicate of a previously-processed message.

v GSS_S_OLD_TOKEN indicates that the cryptographic check value on the received message was
correct, but the message is too old to be checked for duplication.

When message sequencing is enabled, the possible returns for well-formed and correctly signed
messages are:

v GSS_S_COMPLETE indicates that:

– The message was within the window (of time or sequence space) allowing replay events to be
detected

– The message was not a replay of a previously-processed message within that window, and

– No predecessor sequenced messages are missing relative to the last received message processed
on the context with a correct cryptographic check value.

v GSS_S_DUPLICATE_TOKEN indicates that the integrity check value on the received message was
correct, but the message was recognized as a duplicate of a previously-processed message.

v GSS_S_OLD_TOKEN indicates that the integrity check value on the received message was correct, but
the token is too old to be checked for duplication.

v GSS_S_UNSEQ_TOKEN indicates that the cryptographic check value on the received message was
correct, but it is earlier in a sequence stream than a message already processed on the context.

v GSS_S_GAP_TOKEN indicates that the cryptographic check value on the received message was
correct, but one or more predecessor sequenced messages have not be successfully processed relative
to the last received message on the context with a correct cryptographic check value.

Quality of protection
Some mechanisms provide their users with fine granularity control over the means used to provide
message protection, allowing callers to trade off security processing overhead dynamically against the
protection requirements of particular messages. A message quality-of-protection (QOP) parameter selects
among different QOP options supported by that mechanism. On context establishment for a multi-QOP
mechanism, context-level data provides the prerequisite data for a range of protection qualities.

Anonymity
In certain situations or environments, an application may wish to authenticate a peer or protect
communications (or both) using GSS-API message services without revealing its own identity. In ordinary
GSS-API usage, a context initiator’s identity is made available to the context acceptor as part of the
context establishment process.

To provide for anonymity support, a GSS_C_ANON_FLAG is provided for context initiators to request that
their identity not be given to the context acceptor. Mechanisms are not required to honor this request, but
a caller is informed through the return flags whether the request was honored. Note that authentication as
the anonymous principal does not necessarily imply that credentials are not required in order to establish a
context

Intro to GSS-API

Chapter 4. Introduction to GSS-API 177

Error handling
Each GSS-API routine returns two status values:

Major status
Major status values are generic API errors defined in RFC 2078, Generic Security Service
Application Program Interface, Version 2. They are the same for all implementations of GSS-API
and are not dependent upon the underlying mechanism.

Minor status
Minor status values are mechanism-specific errors that further define the error reported. Minor
status values are not portable between implementations of GSS-API and vary across mechanisms.

When designing portable applications, use major status values for handling errors. Use minor status
values to debug applications and to display error and error-recovery information to users. The
gss_display_status() routine is used to obtain printable text strings for major and minor status values.

Major status values
GSS-API routines return GSS status codes as their OM_uint32 function value. These codes indicate
generic API errors and are common across GSS-API implementations. A GSS status code indicates a
single API error from the routine and a single calling error. Additional status information can be contained
in the GSS status code as supplementary information. The errors are encoded into a 32-bit GSS status
code as follows:

If a GSS-API routine returns a GSS status code whose upper 16 bits contain a nonzero value, the call
failed. If the calling error field is nonzero, the application’s call of the routine was in error. In addition, the
routine can indicate additional information by setting one or more bits in the supplementary information
field of the status code.

The following table lists the GSS-API calling errors and their meanings:

Table 30. GSS-API calling errors

Error Meaning

GSS_S_CALL_INACCESSIBLE_READ Unable to read an input parameter

GSS_S_CALL_INACCESSIBLE_WRITE Unable to write an output parameter

GSS_S_CALL_BAD_STRUCTURE Incorrect parameter structure

The following table lists the GSS-API routine errors and their meanings:

Table 31. GSS-API routine errors

Error Meaning

GSS_S_BAD_MECH Mechanism is not supported

GSS_S_BAD_NAME Name is not valid

GSS_S_BAD_NAMETYPE Name type is not valid

GSS_S_BAD_BINDINGS Channel bindings are not correct

Calling Error Routine Error Supplementary Information

MSB LSB

Bit 31 24 23 16 15 0

Figure 1. GSS status code bit locations

Intro to GSS-API

178 V1R4.0 Network Authentication Service Programming

Table 31. GSS-API routine errors (continued)

Error Meaning

GSS_S_BAD_STATUS Status value is not valid

GSS_S_BAD_SIG Token signature is not correct

GSS_S_NO_CRED No credentials supplied

GSS_S_NO_CONTEXT No context established

GSS_S_DEFECTIVE_TOKEN Token is not valid

GSS_S_DEFECTIVE_CREDENTIAL Credential is not valid

GSS_S_CREDENTIALS_EXPIRED Credentials have expired

GSS_S_CONTEXT_EXPIRED Context has expired

GSS_S_FAILURE Routine failed (check minor status)

GSS_S_BAD_QOP Bad quality-of-protection value

GSS_S_UNAUTHORIZED Operation not authorized by local security policy

GSS_S_UNAVAILABLE Operation or option not available

GSS_S_DUPLICATE_ELEMENT Credential element already exists

GSS_S_NAME_NOT_MN Not a mechanism name

The following table lists the GSS-API supplementary status bits and their meanings:

Table 32. GSS-API supplementary status bits

Status Bit Meaning

GSS_S_CONTINUE_NEEDED Call routine again to complete request

GSS_S_DUPLICATE_TOKEN Token is duplicate of earlier token

GSS_S_OLD_TOKEN Token validity period has expired

GSS_S_UNSEQ_TOKEN Later token has already been processed

GSS_S_GAP_TOKEN Skipped predecessor token detected

All GSS_S_ symbols equate to complete OM_uint32 status codes rather than to bit field values.

The major status code GSS_S_FAILURE indicates that an error was detected that has no major status
code. Check the minor status code for details about the error.

The GSS-API provides three macros for manipulating major status values:

v GSS_CALLING_ERROR()

v GSS_ROUTINE_ERROR()

v GSS_SUPPLEMENTARY_INFO()

Each macro takes a GSS status code and masks all but the relevant field. For example, when you use the
GSS_ROUTINE_ERROR() macro on a status code, it returns a value. The value of the macro is arrived at
by using only the routine errors field and zeroing the values of the calling error and supplementary
information fields.

An additional macro, GSS_ERROR(), lets you determine whether the status code indicates a calling or
routine error. If the status code indicates a calling or routine error, the macro returns a nonzero value. If no
calling or routine error is indicated, the macro returns zero.

Intro to GSS-API

Chapter 4. Introduction to GSS-API 179

Note that an inaccessible read or write error may not be returned. Instead, a signal may be generated as a
result of the attempt to access the storage location.

Minor status values
The GSS-API routines return a minor_status parameter to indicate errors from either the GSS-API
interface layer or the underlying security mechanism layer. The parameter contains a single error, indicated
by an OM_uint32 value. For the Kerberos mechanism, this value is equivalent to the Kerberos
krb5_error_code data type and contains a Kerberos return code. The gss_display_status() routine is
used to generate a displayable message describing the minor status code.

Data types

Integer
The GSS-API defines the integer data type:
OM_uint32 32-bit unsigned integer

This integer data type is a portable data type that the GSS-API routine definitions use for guaranteed
minimum bit counts.

String
Many of the GSS-API routines take arguments and return values that describe contiguous multiple-byte
data, such as opaque data and character strings. Use the gss_buffer_t data type, which is a pointer to
the gss_buffer_desc buffer descriptor, to pass the data between the GSS-API routines and the
application.

The gss_buffer_t data type has this definition:
typedef struct gss_buffer_desc_struct {

size_t length;
void * value;

} gss_buffer_desc, *gss_buffer_t;

The length field contains the total number of bytes in the data. The value field contains a pointer to the
actual data.

When using the gss_buffer_t data type, the GSS-API routine allocates storage for any data it passes to
the application. The calling application is responsible for allocating the gss_buffer_desc object. It
initializes gss_buffer_desc objects with the value GSS_C_EMPTY_BUFFER. To free the storage
allocated by a GSS-API routine, the application calls the gss_release_buffer() routine. Since the GSS-API
routine may use different storage management algorithms, the application should never attempt to release
storage allocated by a GSS-API routine by any other means.

Object identifier
Applications use the gss_oid data type to specify a security mechanism and to specify name types.

Select a security mechanism by using the following object identifier (OID):

v For the Kerberos security mechanism, specify gss_mech_krb5_old or gss_mech_krb5 . These
correspond to object identifiers {1 3 5 1 5 2} and {1 2 840 113554 1 2 2}. You should use
gss_mech_krb5 instead of gss_mech_krb5_old unless you need to interoperate with an older level of
the Kerberos support.

Select a name type by using the following OIDs:

Intro to GSS-API

180 V1R4.0 Network Authentication Service Programming

v For a name, specify GSS_C_NT_USER_NAME. This corresponds to object identifier {1 2 840 113554 1
2 1 1}. For the Kerberos mechanism, a name is a character string that is fully-qualified
(principal@realm) or unqualified (principal).

v For a service, specify GSS_C_NT_HOSTBASED_SERVICE. This corresponds to object identifier {1 2
840 113554 1 2 1 4}. For the Kerberos mechanism, a service is a character string that is fully-qualified
(service@host) or unqualified (service).

v For a principal structure created by the krb5_parse_name() routine, specify gss_nt_krb5_principal .
This name type is supported only by the Kerberos mechanism and corresponds to object identifier {1 2
840 113554 1 2 2 2}.

v For a user identifier, specify GSS_C_NT_STRING_UID_NAME for the string representation of the uid or
GSS_C_NT_MACHINE_UID_NAME for the binary representation of the uid . These correspond to object
identifiers {1 2 840 113554 1 2 1 3} and {1 2 840 113554 1 2 1 2}.

The gss_OID data type contains tree-structured values defined by ISO and has the following definition:
typedef struct gss_OID_desc_struct {

OM_uint32 length;
void * elements;

} gss_OID_desc, *gss_OID;

The elements field of the structure points to the first byte of an octet string containing the ASN.1 BER
(Basic Encoding Rules) encoding of the value of the gss_OID data type. The length field contains the
number of bytes in the value.

The gss_OID_desc values returned by GSS-API routines are read-only values. The application should not
attempt to release them by calling the gss_release_oid() function.

Object identifier sets
The gss_OID_set data type represents one or more object identifiers. The values of the gss_OID_set
data type are used to:

v Report the available mechanisms supported by GSS-API

v Request specific mechanisms

v Indicate the mechanisms supported by a GSS-API credential

v Report the available name types supported by GSS-API.

The gss_OID_set data type is defined:
typedef struct gss_OID_set_desc_struct {

int count;
gss_OID elements;

} gss_OID_set_desc, *gss_OID_set;

The count field contains the number of OIDs in the set. The elements field is a pointer to an array of
gss_oid_desc objects, each describing a single OID. The application calls the gss_release_oid_set()
routine to release the storage associated with gss_OID_set values that are returned by GSS-API routines.

Credentials
Credentials establish, or prove, the identity of an application or other principal. The gss_cred_id_t is an
atomic data type that identifies a GSS-API credential data structure. The data type is opaque to the caller.
The credential identifier is valid only within the process that acquired the credential.

Contexts
The security context is a pair of GSS-API data structures that contain information shared between the
communicating applications. The information describes the cryptographic state of each application. This
security context is required for per-message security services and is created by a successful

Intro to GSS-API

Chapter 4. Introduction to GSS-API 181

authentication exchange. The gss_ctx_id_t data type contains an atomic value that identifies one end of a
GSS-API security context. The data type is opaque to the caller. The context identifier is valid only within
the process that initialized or accepted the security context.

Tokens
GSS-API uses tokens to maintain the synchronization between the communicating applications sharing a
security context. The token is a cryptographically-protected octet string. The string is generated by the
underlying security mechanism at one end of the GSS-API security context for use by the peer application
at the other end of the security context. The data type is opaque to the caller. The caller uses the
gss_buffer_t data type as tokens to GSS-API routines.

GSS-API uses two types of tokens. Context-level tokens are used to establish the security context
between the communicating applications. Per-message tokens are used to provide integrity and
confidentiality services for messages exchanged by the applications.

Names
Names identify principals. The GSS-API authenticates the relationship between a name and the principal
claiming the name.

Names are represented in two forms:

v A printable form, for presentation to an application

v An internal, canonical form that is used by the GSS-API and is opaque to applications.

The gss_import_name() and gss_display_name() routines convert names between their printable and
internal forms. Each security mechanism has its own name format. The gss_import_name() routine
creates internal representations of the supplied name for use by each of the supported security
mechanisms. Internal names created by a specific security mechanism contain internal representations for
just that security mechanism. The gss_compare_name() routine can be used to compare two names in
their internal format.

Channel bindings
You can define and use channel bindings to associate the security context with the communications
channel that carries the context. Channel bindings are communicated to the GSS-API by using the
following structure:
typedef struct gss_channel_binding_struct {

OM_uint32 initiator_addrtype;
gss_buffer_desc initiator_address;
OM_uint32 acceptor_addrtype;
gss_buffer_desc acceptor_address;
gss_buffer_desc application_data;

} gss_channel_bindings_desc, *gss_channel_bindings_t;

Use the initiator_addrtype and acceptor_addrtype fields to indicate the type of addresses contained in the
initiator_address and acceptor_address buffers. The following table lists the address types and their
address type values:

Table 33. Channel bindings address types

Address Type Values

GSS_C_AF_UNSPEC Unspecified

GSS_C_AF_LOCAL Host local address

GSS_C_AF_INET DARPA Version 4 internet address (IPv4).

GSS_C_AF_IMPLINK ARPAnet IMP

GSS_C_AF_PUP pup protocols (for example, BSP)

Intro to GSS-API

182 V1R4.0 Network Authentication Service Programming

Table 33. Channel bindings address types (continued)

Address Type Values

GSS_C_AF_CHAOS MIT CHAOS protocol

GSS_C_AF_NS XEROX NS

GSS_C_AF_NBS nbs

GSS_C_AF_ECMA ECMA

GSS_C_AF_DATAKIT datakit protocols

GSS_C_AF_CCITT CCITT protocols (for example, X.25)

GSS_C_AF_SNA IBM SNA

GSS_C_AF_DECnet Digital DECnet

GSS_C_AF_DLI Direct data link interface

GSS_C_AF_LAT LAT

GSS_C_AF_HYLINK NSC Hyperchannel

GSS_C_AF_APPLETALK AppleTalk

GSS_C_AF_BSC BISYNC 2780/3780

GSS_C_AF_DSS Distributed system services

GSS_C_AF_OSI OSI TP4

GSS_C_AF_X25 X25

GSS_C_AF_INET6 DARPA Version 6 internet address (IPv6)

GSS_C_AF_NULLADDR No address specified

The tags specify address families rather than addressing formats. For address families that contain several
alternative address forms, the initiator_address and acceptor_address fields should contain sufficient
information to determine which address form is being used. Format the bytes that contain the addresses in
the order the bytes are transmitted across the network.

The GSS-API creates an octet string by concatenating all of the fields in the
gss_channel_bindings_desc data structure. The security mechanism signs the octet string and binds the
signature to the token generated by the gss_init_sec_context() routine. The context acceptor presents
the same bindings to the gss_accept_sec_context() routine, which generates its own signature and
compares it to the signature in the token. If the signatures differ, the gss_accept_sec_context() routine
returns a GSS_S_BAD_BINDINGS error and the context is not established.

Some security mechanisms check that the initiator_address field of the channel bindings presented to the
gss_init_sec_context() routine contains the correct network address of the local system. Therefore,
portable applications should use either the correct address type and value or specify
GSS_C_AF_NULLADDR for the initiator_addrtype field. Some security mechanisms include the channel
binding data in the token instead of a signature, so portable applications should not use confidential data
as channel binding components. The Kerberos GSS-API does not verify the address or include the plain
text binding information in the token.

Optional parameters
In some of the routine descriptions, optional parameters allow the application to request default behavior
by passing a default value for a parameter. The conventions shown in the table are used for optional
parameters:

Intro to GSS-API

Chapter 4. Introduction to GSS-API 183

|

Table 34. GSS-API optional parameters

Data Types

gss_buffer_t data types GSS_C_NO_BUFFER

Output integer data types NULL

OID data types GSS_C_NO_OID

OID set data types GSS_C_NO_OID_SET

Credential data types GSS_C_NO_CREDENTIAL

Context data types GSS_C_NO_CONTEXT

Channel binding data types GSS_C_NO_CHANNEL_BINDINGS

Name data types GSS_C_NO_NAME

Empty buffer descriptor initialization GSS_C_EMPTY_BUFFER

GSS-API version compatibility
Some of the type definitions used by GSS-API function prototypes have changed between Version 1 and
Version 2 of the GSS-API specifications (Internet RFC 2744). The default definitions are those defined by
Version 2 of the specifications. You can use the Version 1 definitions by defining the
GSSAPI_V1_COMPAT compiler variable when compiling your source code.

The following function names have changed between GSS-API Version 1 and GSS-API Version 2. The
original function names are still supported for compatibility with applications written to the GSS-API Version
1 specifications.

v The gssapi_sign() routine is now the gssapi_get_mic() routine

v The gssapi_verify() routine is now the gssapi_verify_mic() routine

v The gssapi_seal() routine is now the gssapi_wrap() routine

v The gssapi_unseal() routine is now the gssapi_unwrap() routine.

Interoperability with Microsoft Windows 2000 SSPI
A GSS-API application can communicate with a Microsoft Windows 2000 SSPI application using the
Kerberos security mechanism.

Creating the security context
The InitializeSecurityContext() function is used to create the SSPI security context. The
ISC_REQ_MUTUAL_AUTH, ISC_REQ_REPLAY_DETECT, ISC_REQ_SEQUENCE_DETECT,
ISC_REQ_INTEGRITY, and ISC_REQ_CONFIDENTIALITY flags are used to specify the context attributes.
The gss_accept_sec_context() function is then used to accept the security context on the remote partner.
Since channel bindings are not supported by SSPI, you must specify GSS_C_NO_CHANNEL_BINDINGS
on the gss_accept_sec_context() function call.

Accepting the security context
The AcceptSecurityContext() function is used to accept a GSS-API security context created by the
gss_init_sec_context() function. Since channel bindings are not supported by SSPI, you must specify
GSS_C_NO_CHANNEL_BINDINGS on the gss_init_sec_context() function call.

Message signature
The MakeSignature() function is used to sign a message and the VerifySignature() function is used to
verify a signature. The gss_get_mic() and gss_verify_mic() functions are the corresponding GSS-API
functions.

Intro to GSS-API

184 V1R4.0 Network Authentication Service Programming

Message encryption
The EncryptMessage() function is used to encrypt a message and the DecryptMessage() function is
used to decrypt a message. The gss_wrap() and gss_unwrap() functions are the corresponding GSS-API
functions.

Message sequence numbers
The application is responsible for supplying the proper message sequence number when processing a
message with the SSPI message functions. The first message is always message 0 and the sequence
number is incremented for each successive message. The sequence numbers for sent messages are
separate from the sequence numbers for received messages.

Intro to GSS-API

Chapter 4. Introduction to GSS-API 185

186 V1R4.0 Network Authentication Service Programming

Chapter 5. GSS-API programming interfaces

This chapter lists the GSS-API programming interfaces in alphabetical order and provides information
about the purpose, format, parameters, use, and status codes of each.

gss_accept_sec_context

Purpose
Accepts a security context created by the context initiator.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_accept_sec_context (

OM_uint32 * minor_status,
gss_ctx_id_t * context_handle,
gss_cred_id_t * acceptor_cred_handle,
gss_buffer_t input_token,
gss_channel_bindings_t input_chan_bindings,
gss_name_t * src_name,
gss_OID * mech_type,
gss_buffer_t output_token,
gss_flags_t * ret_flags,
OM_uint32 * time_rec,
gss_cred_id_t * delegated_cred_handle)

Parameters

Input
acceptor_cred_handle

Specifies the GSS-API credential for the identity claimed by the context acceptor. The credential must
be either an ACCEPT type credential or a BOTH type credential.

input_token
Specifies the token received from the context initiator.

input_chan_bindings
Specifies the bindings describing the communications channel used between the communicating
applications. The channel bindings specified by the context acceptor must match the bindings that
were specified by the context initiator when the input token was created. Specify
GSS_C_NO_CHANNEL_BINDINGS if there are no channel bindings.

Input/Output
context_handle

Specifies a context handle for the context. The first time that the context acceptor calls the
gss_accept_sec_context() routine, the context handle value must be set to GSS_C_NO_CONTEXT.
For subsequent calls to continue setting up the context, the context handle must be the value returned
by the previous call to the gss_accept_sec_context() routine.

Output
src_name

Returns the authenticated name of the context initiator. If the authenticated name is not required,
specify NULL for this parameter. The returned name is an anonymous internal name if the
GSS_C_ANON_FLAG is set in the returned flags. The application should release the name when it is
no longer needed by calling the gss_release_name() routine.

© Copyright IBM Corp. 2000, 2002 187

mech_type
Returns the security mechanism that the context was established with. If the security mechanism type
is not required, specify NULL for this parameter. The gss_OID value returned for this parameter points
to a read-only structure and must not be released by the application. The returned security mechanism
is one of the following:

v gss_mech_krb5_old - Beta Kerberos V5 mechanism

v gss_mech_krb5 - Kerberos V5 mechanism

output_token
Returns a token to be returned to the context initiator. If no token is to be passed to the context
initiator, the gss_accept_sec_context() routine sets the output_token length field to zero. Otherwise,
the output_token length and value fields are set to nonzero values. The application should release the
output token when it is no longer needed by calling the gss_release_buffer() routine.

ret_flags
Returns a bitmask containing independent flags representing services that the initiating application has
requested. Specify NULL for this parameter if the flag values are not required. The following symbolic
definitions are provided to test the individual flags and should be logically ANDed with the value of
ret_flags to test whether the context supports the service option.

v GSS_C_DELEG_FLAG - Delegated credentials are available if this flag is TRUE

v GSS_C_MUTUAL_FLAG - Mutual authentication is required if this flag is TRUE

v GSS_C_REPLAY_FLAG - Replayed signed or sealed messages will be detected if this flag is TRUE

v GSS_C_SEQUENCE_FLAG - Out-of-sequence signed or sealed messages will be detected if this
flag is TRUE

v GSS_C_CONF_FLAG - Confidentiality services are available if this flag is TRUE

v GSS_C_INTEG_FLAG - Integrity services are available if this flag is TRUE

v GSS_C_ANON_FLAG - Anonymous services are available if this flag is TRUE. The src_name
parameter returns an anonymous internal name

v GSS_C_PROT_READY_FLAG - Protection services, as specified by the GSS_C_CONF_FLAG and
GSS_C_INTEG_FLAG, are available if the accompanying major status is GSS_S_COMPLETE or
GSS_S_CONTINUE_NEEDED. Otherwise, protection services are available only if the
accompanying major status is GSS_S_COMPLETE.

v GSS_C_TRANS_FLAG - If this flag is set, the gss_export_sec_context() function can be used to
export the security context. The gss_export_sec_context() function is not available if this flag is
not set.

time_rec
Returns the number of seconds remaining before the context is no longer valid. If the mechanism does
not support credential expiration, the return value is GSS_C_INDEFINITE. Specify NULL for this
parameter if the remaining time is not required.

delegated_cred_handle
Returns the credential handle for delegated credentials received from the context initiator. Specify
NULL for this parameter if the delegated credentials are not required. A credential handle is returned
only if the GSS_C_DELEG_FLAG flag is set in the return flags. The returned credential can then be
used to initiate a new security context by calling the gss_init_sec_context() routine. The returned
credential should be released when it is no longer needed by calling the gss_release_cred() routine.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_accept_sec_context() routine is the second step in establishing a security context between the
context initiator and the context acceptor. In the first step, the context initiator calls the
gss_init_sec_context() routine, which returns a token for the security context. The context initiator then

GSS-API interfaces

188 V1R4.0 Network Authentication Service Programming

passes this security token to the context acceptor. In the second step, the context acceptor takes the
token supplied by the context initiator and calls the gss_accept_sec_context() routine to accept the
context.

If the length value in the output_token is not zero, the context acceptor must pass the returned token to
the context initiator. The context initiator must then call gss_init_sec_context() and specify the context
identifier returned by the original call to gss_init_sec_context() as well as the output token that was
returned by the context acceptor.

To complete the context establishment, one or more reply tokens may be required from the peer
application. If so, gss_accept_sec_context() returns a status flag of GSS_S_CONTINUE_NEEDED, in
which case it should be called again when the reply token is received from the peer application, passing
the token to gss_accept_sec_context() through the input_token parameter.

The availability of confidentiality services depends on the underlying security mechanism and the features
that have been installed on the system. The GSS_C_CONF_FLAG is returned only if confidentiality
services are available on both the local and remote systems. If confidentiality services are available on the
remote system but not on the local system, an error is returned by the gss_unwrap() routine if an
encrypted message is received (that is, confidentiality was requested on the call to the gss_wrap() routine
on the remote system).

Whenever the GSS_S_CONTINUE_NEEDED status flag is set, the context is not fully established and the
following restrictions apply to the output parameters:

v The value that the time_rec parameter returns is undefined.

v Unless the accompanying ret_flags parameter contains the bit GSS_C_PROT_READY_FLAG, indicating
that per-message services may be applied in advance of a successful completion status, the value
returned by the mech_type parameter may be undefined until the routine returns a major status of
GSS_S_COMPLETE.

v The values of the GSS_C_DELEG_FLAG, GSS_C_MUTUAL_FLAG, GSS_C_REPLAY_FLAG,
GSS_C_SEQUENCE_FLAG, GSS_C_CONF_FLAG, GSS_C_INTEG_FLAG, and GSS_C_ANON_FLAG
bits returned through the ret_flags parameter contain the values that the implementation expects to be
valid if context establishment is to succeed.

v The value of the GSS_C_PROT_READY_FLAG bit returned through the ret_flags parameter indicates
the actual state at the time gss_accept_sec_context() returns, whether or not the context is fully
established.

Kerberos Mechanism
The gss_accept_sec_context() routine needs a key to decrypt the token provided by the context initiator.
The token contains the unencrypted principal name of the context acceptor. This name identifies the key
that the context initiator used to encrypt the token. The default key table is used to obtain the key for the
indicated principal. The KRB5_KTNAME environment variable can be set to use a different key table.

The context expiration time is obtained from the service ticket that was obtained by the context initiator as
part of the gss_init_sec_context() processing.

When delegation is used, the forwarded Kerberos credentials are stored in a new Kerberos credentials
cache that is associated with the GSS-API credential returned for the delegated_cred_handle parameter.
This GSS-API credential can then be used to initiate new security contexts on behalf of the original context
initiator.

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 189

Status Codes
Table 35. Status Codes for gss_accept_sec_context()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_BAD_BINDINGS The input_token parameter contains different channel bindings
from those specified with the input_chan_bindings parameter.

GSS_S_BAD_MECH The security mechanism used by the context initiator is not
available on the acceptor system.

GSS_S_BAD_SIG The received input token contains an incorrect signature.

GSS_S_CONTINUE_NEEDED Control information in the returned output token must be sent to
the initiator and a response must be received and passed as the
input_token argument to a continuation call to the
gss_accept_sec_context() routine.

GSS_S_CREDENTIALS_EXPIRED Credentials are no longer valid.

GSS_S_DEFECTIVE_CREDENTIAL Consistency checks performed on the credential structure
referenced by the verifier_cred_handle parameter failed.

GSS_S_DEFECTIVE_TOKEN Consistency checks performed on the input token failed.

GSS_S_DUPLICATE_TOKEN The token is a duplicate of a token that has already been
processed. This is a fatal error during context establishment.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS_S_NO_CONTEXT The context identifier provided by the caller does not refer to a
valid security context.

GSS_S_NO_CRED No credentials are available or the credentials are valid for
context initiation use only.

GSS_S_OLD_TOKEN The token is too old to be checked for duplication against
previous tokens. This is a fatal error during context
establishment.

gss_acquire_cred

Purpose
Allows an application to acquire a GSS-API credential.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_acquire_cred (

OM_uint32 * minor_status,
gss_name_t desired_name,
OM_uint32 time_req,
gss_OID_set desired_mechs,
gss_cred_usage_t cred_usage,
gss_cred_id_t * output_cred_handle,
gss_OID_set * actual_mechs,
OM_uint32 * time_rec)

GSS-API interfaces

190 V1R4.0 Network Authentication Service Programming

Parameters

Input
desired_name

Specifies the principal name to be used for the credential. Specify GSS_C_NO_NAME for this
parameter to use the name obtained from the default credentials cache.

time_req
Specifies the number of seconds that the credential remains valid. Specify GSS_C_INDEFINITE to
request the maximum credential lifetime. Specify zero for the default lifetime of 2 hours. The actual
credential lifetime is limited by the lifetime of the underlying ticket-granting ticket for GSS_C_INITIATE
and GSS_C_BOTH credentials.

desired_mechs
Specifies the desired security mechanisms for use with the credential. Mechanisms that are not
available on the local system are ignored. The actual mechanisms that can be used with the credential
are returned in the actual_mechs parameter. Specify GSS_C_NO_OID_SET for this parameter to use
the default mechanism of gss_mech_krb5 .

The following security mechanisms are supported:

v gss_mech_krb5_old - Beta Kerberos V5 mechanism

v gss_mech_krb5 - Kerberos V5 mechanism

cred_usage
Specifies the desired credential usage as follows:

v GSS_C_INITIATE if the credential can be used only to initiate security contexts

v GSS_C_ACCEPT if the credential can be used only to accept security contexts

v GSS_C_BOTH if the credential can be used to both initiate and accept security contexts.

Output
output_cred_handle

Returns the handle for the GSS-API credential.

actual_mechs
Returns the set of mechanism identifiers the credential is valid for. If the actual mechanisms are not
required, specify NULL for this parameter. The gss_OID_set returned for this parameter should be
released by calling the gss_release_oid_set() routine when it is no longer needed.

time_rec
Returns the number of seconds the credential remains valid. If the time remaining is not required,
specify NULL for this parameter.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_acquire_cred() routine allows an application to obtain a GSS-API credential. The application can
then use the credential with the gss_init_sec_context() and gss_accept_sec_context() routines.

If either GSS_C_INITIATE or GSS_C_BOTH is specified for the credential usage, the application must
have a valid ticket in the default credentials cache and the ticket must not expire for at least 10 minutes.
The gss_acquire_cred() routine uses the first valid ticket-granting-ticket (TGT), or the first valid service
ticket if there is no TGT, to create the GSS-API credential. The principal specified by the desired_name
parameter must match the principal obtained from the credentials cache or must be specified as
GSS_C_NO_NAME. The KRB5CCNAME environment variable is used to identify the credentials cache
used by the Kerberos security mechanism.

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 191

If GSS_C_ACCEPT or GSS_C_BOTH is specified for the credential usage, the principal specified by the
desired_name parameter must be defined in a key table. The KRB5_KTNAME environment variable is
used to identify the key table used by the Kerberos security mechanism.

If the Kerberos security server is running on the same system as the application, it is not necessary to
have a key table for GSS_C_ACCEPT or GSS_C_BOTH credentials. Instead, GSS-API uses the Kerberos
principal associated with the current system identity to decrypt service tickets. In order to activate this
support, the application must be running with a user or group that has at least READ access to the
IRR.RUSERMAP resource in the FACILITY class, the KRB5_SERVER_KEYTAB environment variable
must be set to 1, and the Kerberos principal associated with the current system identity must match the
principal for the GSS-API credential.

Status Codes
Table 36. Status Codes for gss_acquire_cred()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_BAD_MECH None of the requested mechanisms are supported by the local
system.

GSS_S_BAD_NAME The name specified for the desired_name parameter is not valid.

GSS_S_BAD_NAMETYPE The name specified for the desired_name parameter is not
supported by the applicable underlying GSS-API mechanisms.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS_S_NO_CRED Default credentials are not available.

gss_add_cred

Purpose
Adds a credential element to an existing GSS-API credential.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_add_cred (

OM_uint32 * minor_status,
gss_cred_id_t input_cred_handle,
gss_name_t desired_name,
gss_OID mech_type,
gss_cred_usage_t cred_usage,
OM_uint32 init_time_req,
OM_uint32 accept_time_req,
gss_cred_id_t * output_cred_handle,
gss_OID_set * actual_mechs,
OM_uint32 * init_time_rec,
OM_uint32 * accept_time_rec)

GSS-API interfaces

192 V1R4.0 Network Authentication Service Programming

Parameters

Input
input_cred_handle

Specifies the GSS-API credential to be modified. Specify GSS_C_NO_CREDENTIAL to modify the
default GSS-API credential.

desired_name
Specifies the principal name to be used for the credential.

mech_type
Specifies the mechanism element to be added to the credential. The credential must not already
contain an element for this mechanism. The supported security mechanisms are as follows:

v gss_mech_krb5_old - Beta Kerberos V5 mechanism

v gss_mech_krb5 - Kerberos V5 mechanism

cred_usage
Specifies the desired credential use as follows:

v GSS_C_INITIATE - The credential can be used only to initiate security contexts

v GSS_C_ACCEPT - The credential can be used only to accept security contexts

v GSS_C_BOTH - The credential can be used to both initiate and accept security contexts

init_time_req
Specifies the number of seconds the credential remains valid for initiating contexts. The z/OS Kerberos
implementation of GSS-API does not support separate initiate and accept expiration times. The actual
expiration time is the smaller of the initiate and accept times. Specify zero to request the default
lifetime of 2 hours. Specify GSS_C_INDEFINITE to request the maximum lifetime.

accept_time_req
Specifies the number of seconds the credential remains valid for accepting contexts. The z/OS
Kerberos implementation of GSS-API does not support separate initiate and accept expiration times.
The actual expiration time is the smaller of the initiate and accept times. Specify zero to request the
default lifetime of 2 hours. Specify GSS_C_INDEFINITE to request the maximum lifetime.

Output
output_cred_handle

Returns the credential handle for the updated credential. If NULL is specified for this parameter, the
new credential element is added to the input credential. Otherwise, a new credential is created from
the input credential and contains all of the credential elements of the input credential plus the new
credential element. NULL may not be specified for this parameter if GSS_C_NO_CREDENTIAL is
specified for the input credential.

actual_mechs
Returns the total set of mechanisms supported by the GSS-API credential. Specify NULL for this
parameter if the actual mechanisms are not required. The gss_OID_set returned for this parameter
should be released by calling the gss_release_oid_set() routine when it is no longer needed.

init_time_rec
Returns the initiate expiration time in seconds. Specify NULL for this parameter if the initiate time is
not required.

accept_time_rec
Returns the accept expiration time in seconds. Specify NULL for this parameter if the accept time is
not required.

minor_status
Returns a status code from the security mechanism.

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 193

Usage
The gss_add_cred() routine adds a new mechanism element to a GSS-API credential. The credential
must not already contain an element for the mechanism. A GSS-API credential must contain an element
for each mechanism that is used for contexts that are initiated or accepted using the credential.

The gss_add_cred() routine performs the same function as the gss_acquire_cred() routine does for a
single mechanism.

Status Codes
Table 37. Status Codes for gss_add_cred()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_BAD_MECH The specified mechanism is not supported.

GSS_S_BAD_NAME The supplied name is not valid.

GSS_S_BAD_NAMETYPE The supplied name does not contain an internal representation
for the requested mechanism.

GSS_S_DUPLICATE_ELEMENT The credential already contains an element for the specified
mechanism.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS_S_NO_CRED The referenced credential does not exist.

gss_add_oid_set_member

Purpose
Adds an OID to an OID set.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_add_oid_set_member (

OM_uint32 * minor_status,
gss_OID input_oid,
gss_OID_set * oid_set)

Parameters

Input
input_oid

Specifies the OID you want to add to the OID set.

Input/Output
oid_set

Specifies the OID set. The gss_OID array referred to by the elements field of the gss_OID_set is
reallocated to hold the new OID. The application should call the gss_release_oid_set() routine to
release the OID set when it is no longer needed.

GSS-API interfaces

194 V1R4.0 Network Authentication Service Programming

Output
minor_status

Returns a status code from the security mechanism.

Usage
The gss_add_oid_set_member() routine adds a new OID to an existing OID set. You can create an
empty OID set by calling the gss_create_empty_oid_set() routine. The gss_add_oid_set_member()
routine makes a copy of the input OID, so any future changes to the input OID have no effect on the copy
in the OID set.

Status Codes
Table 38. Status Codes for gss_add_oid_set_member()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

gss_canonicalize_name

Purpose
Reduces a GSS-API internal name to a mechanism name.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_canonicalize_name (

OM_uint32 * minor_status,
gss_name_t input_name,
gss_OID mech_type,
gss_name_t * output_name)

Parameters

Input
input_name

Specifies the name to be processed. An error is returned if GSS_C_NO_NAME is specified for this
parameter.

mech_type
Specifies the security mechanism to be used:

v gss_mech_krb5_old - Beta Kerberos V5 mechanism

v gss_mech_krb5 - Kerberos V5 mechanisms

Output
output_name

Returns the mechanism name. The gss_name_t returned by this parameter should be released by
calling the gss_release_name() function when it is no longer needed.

minor_status
Returns a status code from the security mechanism.

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 195

Usage
The gss_canonicalize_name() routine takes a GSS-API internal name that contains multiple internal
representations and returns a new GSS-API internal name with a single name representation that
corresponds to the specified security mechanism. A name that represents a single security mechanism is
called a mechanism name.

Status Codes
Table 39. Status Codes for gss_canonicalize_name()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_BAD_MECH The requested mechanism is not supported.

GSS_S_BAD_NAME The input name is not valid.

GSS_S_BAD_NAMETYPE The input name does not contain an element for the requested
mechanism.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

gss_compare_name

Purpose
Allows an application to compare two internal names to determine if they refer to the same object.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_compare_name (

OM_uint32 * minor_status,
gss_name_t name1,
gss_name_t name2,
int * name_equal)

Parameters

Input
name1

Specifies the first internal name.

name2
Specifies the second internal name.

Output
name_equal

Returns 1 if the names refer to the same object and 0 otherwise.

minor_status
Returns a status code from the security mechanism.

GSS-API interfaces

196 V1R4.0 Network Authentication Service Programming

Usage
The gss_compare_name() routine lets an application compare two internal names to determine whether
they refer to the same object. The two names must have an internal representation format in common in
order to be comparable. The names are considered not equal if either name denotes an anonymous
principal.

Status Codes
Table 40. Status Codes for gss_compare_name()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_BAD_NAME One of the input names is not valid.

GSS_S_BAD_NAMETYPE The two name types cannot be compared. The names must
have an internal representation in common in order to be
comparable.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

gss_context_time

Purpose
Returns the number of seconds that the context remains valid.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_context_time (

OM_uint32 * minor_status,
gss_ctx_id_t context_handle,
OM_uint32 * time_rec)

Parameters

Input
context_handle

Specifies the context to be checked.

Output
time_rec

Returns the number of seconds that the context remains valid.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_context_time() routine checks the specified security context and returns the number of seconds
that the context remains valid. The returned value is GSS_C_INDEFINITE if the context does not have an
expiration time. The Kerberos security mechanism supports context expiration and returns the time
remaining before the underlying service ticket expires, if the context was created by
gss_accept_sec_context() , or the lesser of the requested expiration time and the ticket expiration time, if
the context was created by gss_init_sec_context() .

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 197

Status Codes
Table 41. Status Codes for gss_context_time()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_CONTEXT_EXPIRED The referenced context has expired.

GSS_S_CREDENTIALS_EXPIRED The credentials associated with the context referred to have
expired.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS_S_NO_CONTEXT The context referred to does not exist.

gss_create_empty_oid_set

Purpose
Creates a new, empty OID set.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_create_empty_oid_set (

OM_uint32 * minor_status,
gss_OID_set * oid_set)

Parameters

Output
oid_set

Returns the OID set created by this routine. The application should call the gss_release_oid_set()
routine when the OID set is no longer needed.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_create_empty_oid_set() routine creates a new, empty OID set. Members can be added to the
OID set by calling the gss_add_oid_set_member() routine. The OID set should be released when it is no
longer needed by calling the gss_release_oid_set() routine.

Status Codes
Table 42. Status Codes for gss_create_empty_oid_set()

Status Code Meaning

GSS_C_COMPLETE The routine completed successfully.

GSS_C_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS-API interfaces

198 V1R4.0 Network Authentication Service Programming

gss_delete_sec_context

Purpose
Deletes a security context.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_delete_sec_context (

OM_uint32 * minor_status,
gss_ctx_id_t * context_handle,
gss_buffer_t output_token)

Parameters

Input/Output
context_handle

Specifies the context to be deleted. Upon successful completion, the context_handle value is set to
GSS_C_NO_CONTEXT.

Output
output_token

Returns a token to be sent to the partner application. The partner application then passes this token to
the gss_process_context_token() routine to delete the other end of the security context. The
gss_delete_sec_context() routine sets the output_token length field to zero if no token needs to be
sent to the partner application.

GSS_C_NO_BUFFER may be specified for the output_token parameter. In this case, no token is
returned by the gss_delete_sec_context() routine. Both of the communicating applications must call
gss_delete_sec_context() in order to delete both ends of the security context.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_delete_sec_context() routine deletes one end of a security context. It also deletes the local data
structures associated with the security context. When it deletes the context, the routine can generate a
token. The application must then pass this token to the partner application. The partner application calls
the gss_process_context_token() routine to process the token and complete the process of deleting the
security context.

This call can be made by either peer in a security context to flush context-specific information. Both
communicating applications must call the gss_delete_sec_context() routine if GSS_C_NO_BUFFER is
specified for the output_token parameter.

The context_handle may not be used for additional security services after the gss_delete_sec_context()
routine has successfully completed.

Status Codes
Table 43. Status Codes for gss_delete_sec_context()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 199

Table 43. Status Codes for gss_delete_sec_context() (continued)

Status Code Meaning

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS_S_NO_CONTEXT The supplied context handle did not refer to a valid context.

gss_display_name

Purpose
Provides the textual representation of an opaque internal name.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_display_name (

OM_uint32 * minor_status,
gss_name_t input_name,
gss_buffer_t output_name_buffer,
gss_OID * output_name_type)

Parameters

Input
input_name

Specifies the internal name to be converted to a text string.

Output
output_name_buffer

Return buffer for the character string. The gss_release_buffer() routine should be called to release
the storage when it is no longer needed.

output_name_type
Returns the name type corresponding to the returned character string. The gss_OID value returned for
this parameter points to read-only storage and must not be released by the application. Specify NULL
if the name type is not needed.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_display_name() routine provides an application with the text form of an opaque internal name.
The syntax of the text representation is determined by the mechanism that was used to convert the name.

Kerberos names are formatted as principal-name@realm-name and the name type is set to
gss_nt_krb5_name .

Status Codes
Table 44. Status Codes for gss_display_name()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS-API interfaces

200 V1R4.0 Network Authentication Service Programming

Table 44. Status Codes for gss_display_name() (continued)

Status Code Meaning

GSS_S_BAD_NAME The provided name is not valid.

GSS_S_BAD_NAMETYPE The internal name provided does not have an internal
representation for any of the supported mechanisms.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

gss_display_status

Purpose
Provides an application with the textual representation of a GSS or mechanism status code.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_display_status (

OM_uint32 * minor_status,
OM_uint32 status_value,
int status_type,
gss_OID mech_type,
gss_msg_ctx_t * message_context,
gss_buffer_t status_string)

Parameters

Input
status_value

Specifies the status value to be converted. A status value of zero is not valid and causes the
gss_display_status() routine to return a major status of GSS_S_BAD_STATUS to the application.

status_type
Specifies the status value type and must be one of the following:

v GSS_C_GSS_CODE - GSS major status code

v GSS_C_MECH_CODE - Mechanism minor status code

mech_type
Specifies the security mechanism associated with a minor status code. This parameter is used only
when converting a minor status code.

Input/Output
message_context

Indicates whether the status code has multiple messages to be processed. The first time an
application calls gss_display_status() , the message_context parameter must be initialized to zero.
The gss_display_status() routine returns the first message and sets the message_context parameter
to a nonzero value if more messages are available. The application then continues to call the
gss_display_status() routine to obtain the additional messages until the message_context value is
zero upon return from the gss_display_status() routine.

Output
status_string

Returns the text message for the status value.

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 201

minor_status
Returns a status code from the security mechanism.

Usage
The gss_display_status() routine provides the application with a textual representation of a status code.
The returned message can then be displayed to the user or written to a log file.

The message_context parameter indicates which error message should be returned when a status code
has multiple messages. The first time an application calls the gss_display_status() routine, it must
initialize the message_context value to zero. The gss_display_status() routine then returns the first
message for the status code and sets message_context to a nonzero value if there are additional
messages available. The application can then continue to call gss_display_status() until the
message_context value is zero upon return.

Status Codes
Table 45. Status Codes for gss_display_status()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_BAD_MECH The mechanism specified by the mech_type parameter is not
supported.

GSS_S_BAD_STATUS The value of the status_type parameter is not
GSS_C_GSS_CODE or GSS_C_MECH_CODE, or the value of
the status_value parameter is not a valid status code.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

gss_duplicate_name

Purpose
Creates a duplicate of a GSS-API internal name.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_duplicate_name (

OM_uint32 * minor_status,
gss_name_t input_name,
gss_name_t * output_name)

Parameters

Input
input_name

Specifies the name to be duplicated. An error is returned if GSS_C_NO_NAME is specified for this
parameter.

Output
output_name

Returns the new GSS-API internal name. The gss_name_t returned for this parameter should be
released by calling the gss_release_name() function when it is no longer needed.

GSS-API interfaces

202 V1R4.0 Network Authentication Service Programming

minor_status
Returns a status code from the security mechanism.

Usage
The gss_duplicate_name() routine makes a copy of a GSS-API internal name.

Status Codes
Table 46. Status Codes for gss_duplicate_name()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_BAD_NAME The input name is not valid.

GSS_S_BAD_NAMETYPE The input name type is not supported.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

gss_export_cred

Purpose
Creates a credential token for a GSS-API credential.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_export_cred (

OM_uint32 * minor_status,
gss_cred_id_t cred_handle,
gss_buffer_t cred_token)

Parameters

Input/Output
cred_handle

Specifies the credential handle of the GSS-API credential to be used to create the credential token.
The credential must be an initiate credential.

Output
cred_token

Returns the credential token. The storage for the token should be released when it is no longer
needed by calling the gss_release_buffer() routine.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_export_cred() routine creates a credential token for a GSS-API credential. This credential token
can then be given to another process on the same system or on a different system. This second process
calls gss_import_cred() to create a GSS-API credential from the credential token. In order to use the

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 203

credential on a different system, the security mechanism must allow the credential to be used from any
system. In this case of the Kerberos security mechanism, this means the Kerberos ticket must not contain
a client address list.

A credential can be exported only if it is an initiate credential (GSS_C_INITIATE was specified when the
credential was created). If the credential is not an initiate credential, the major status is set to
GSS_S_NO_CRED. The credential remains available upon completion of the export operation and can be
used in subsequent GSS-API operations.

The credential token created by one implementation of GSS-API cannot be used with a different
implementation of GSS-API.

Status Codes
Table 47. Status Codes for gss_export_cred()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS_S_NO_CRED The supplied credential handle does not refer to a valid
credential.

gss_export_name

Purpose
Exports a mechanism name as an opaque token.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_export_name (

OM_uint32 * minor_status,
gss_name_t input_name,
gss_buffer_t exported_name)

Parameters

Input
input_name

Specifies the GSS-API name to be exported. This must be a mechanism name.

Output
output_token

Returns a token representing the GSS-API name. The gss_release_buffer() routine should be called
to release the token when it is no longer needed.

minor_status
Returns a status code from the security mechanism.

GSS-API interfaces

204 V1R4.0 Network Authentication Service Programming

Usage
The gss_export_name() routine creates an opaque token for a mechanism name. The
gss_canonicalize_name() routine converts a GSS-API internal name with multiple mechanism
representations to a mechanism name. The gss_canonicalize_name() and gss_export_name() calls
enable callers to acquire and process exported name objects, canonicalized and translated in accordance
with the procedures of a particular GSS-API mechanism. Exported name objects can, in turn, be input to
gss_import_name() , yielding equivalent mechanism names. These facilities are designed specifically to
enable efficient storage and comparison of names (for example, for use in access control lists).

Status Codes
Table 48. Status Codes for gss_export_name()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_BAD_NAME The input name is not valid.

GSS_S_BAD_NAMETYPE The input name type is not supported.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS_S_NAME_NOT_MN The supplied name is not a mechanism name. Use the
gss_canonicalize_name() routine to convert an internal name
to a mechanism name.

gss_export_sec_context

Purpose
Creates a security context token for a GSS-API security context.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_export_sec_context (

OM_uint32 * minor_status,
gss_ctx_id_t * context_handle,
gss_buffer_t context_token)

Parameters

Input/Output
context_handle

Specifies the context handle of the GSS-API security context to be used to create the security context
token. The context handle is set to GSS_C_NO_CONTEXT upon successful completion.

Output
context_token

Returns the security context token. The storage for the token should be released when it is no longer
needed by calling the gss_release_buffer() routine.

minor_status
Returns a status code from the security mechanism.

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 205

Usage
The gss_export_sec_context() routine creates a context token for a GSS-API security context. This
context token can then be given to another process on the same system. This second process calls
gss_import_sec_context() to create a GSS-API security context from the context token.

Upon successful completion of gss_export_sec_context() , the security context is no longer available for
use by the current process.

The security context token created by one implementation of GSS-API cannot be used with a different
implementation of GSS-API.

Status Codes
Table 49. Status Codes for gss_export_sec_context()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_CONTEXT_EXPIRED The supplied context is no longer valid.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS_S_NO_CONTEXT The supplied context handle does not refer to a valid context.

GSS_S_UNAVAILABLE The security context can not be exported.

gss_get_mic

Purpose
Generates a cryptographic signature for a message.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_get_mic (

OM_uint32 * minor_status,
gss_ctx_id_t context_handle,
gss_qop_t qop_req,
gss_buffer_t input_message,
gss_buffer_t output_token)

Parameters

Input
context_handle

Specifies the context to be associated with the message when it is sent to the partner application.

qop_req
Specifies the requested quality of protection for the message. Specify GSS_C_QOP_DEFAULT to use
the default quality of protection as defined by the selected security mechanism.

GSS_C_QOP_DEFAULT should always be specified unless it is necessary to select a specific
quality-of-protection algorithm, in which case the application must ensure that the selected algorithm is
compatible with the security mechanism associated with the security context.

GSS-API interfaces

206 V1R4.0 Network Authentication Service Programming

The Kerberos security mechanism supports four integrity algorithms. The default algorithm can be
requested by specifying GSS_C_QOP_DEFAULT, which is equivalent to specifying
GSS_KRB5_INTEG_C_QOP_DEFAULT.

The integrity algorithms are:

v GSS_KRB5_INTEG_C_QOP_DEFAULT - Default integrity algorithm (QOP_DES_MD5 for a DES
session key or QOP_HMAC_SHA1 for a DES3 session key)

v GSS_KRB5_INTEG_C_QOP_MD5 - Truncated MD5 checksum

v GSS_KRB5_INTEG_C_QOP_DES_MD5 - DES_MAC of an MD5 hash

v GSS_KRB5_INTEG_C_QOP_DES_MAC - DES_MAC checksum

v GSS_KRB5_INTEG_C_QOP_HMAC_SHA1 - DES3_HMAC of SHA1 checksum

The encryption key associated with the security context determines which quality-of-protection
algorithms are available. The GSS_KRB5_INTEG_C_QOP_MD5,
GSS_KRB5_INTEG_C_QOP_DES_MD5 and GSS_KRB5_INTEG_C_QOP_DES_MAC algorithms
require a 56-bit DES key. The GSS_KRB5_INTEG_C_QOP_HMAC_SHA1 algorithm requires a 168-bit
DES3 key.

input_message
Specifies the message for which a signature is to be generated.

Output
output_token

Returns a token containing the message signature. The message and this token is then sent to the
partner application, which calls the gss_verify_mic() function to verify the authenticity of the message.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_get_mic() routine generates an encrypted signature for a message and returns this signature in
a token that can be sent to a partner application. The partner application then calls the gss_verify_mic()
routine to validate the signature.

Status Codes
Table 50. Status Codes for gss_get_mic()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_BAD_QOP The requested quality of protection value is not valid.

GSS_S_CONTEXT_EXPIRED The context referred to has expired.

GSS_S_CREDENTIALS_EXPIRED The credentials associated with the referred-to context have
expired.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS_S_NO_CONTEXT The context referred to does not exist.

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 207

gss_import_cred

Purpose
Creates a GSS-API credential from a credential token created by the gss_export_cred() routine.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_import_cred (

OM_uint32 * minor_status,
gss_buffer_t cred_token,
gss_ctx_id_t * cred_handle)

Parameters

Input
cred_token

Specifies the credential token created by the gss_export_cred() routine.

Output
cred_handle

Returns the credential handle for the GSS-API credential created from the credential token. The
gss_release_cred() routine should be called to release the credential when it is no longer needed.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_import_cred() routine accepts a credential token created by the gss_export_cred() routine and
creates a GSS-API credential.

The gss_release_cred() routine should be called to release the GSS-API credential when it is no longer
needed.

The credential token created by one implementation of GSS-API cannot be used with a different
implementation of GSS-API.

Status Codes
Table 51. Status Codes for gss_import_cred()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_DEFECTIVE_TOKEN The supplied credential token is not valid.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

gss_import_name

Purpose
Converts a printable name to the GSS-API internal format.

GSS-API interfaces

208 V1R4.0 Network Authentication Service Programming

Format
#include <skrb/gssapi.h>
OM_uint32 gss_import_name (

OM_uint32 * minor_status,
gss_buffer_t input_name_buffer,
gss_OID input_name_type,
gss_name_t * output_name)

Parameters

Input
input_name_buffer

Specifies the buffer containing the name to convert. The value field contains the address of the name,
and the length field contains the length of the name.

input_name_type
Specifies the object identifier for the type of printable name. These name types are supported:

v GSS_C_NO_OID - specifies the default name type. For the IBM Kerberos implementation of
GSS-API, the default is GSS_C_NT_USER_NAME.

v GSS_C_NT_USER_NAME - specifies a user name. For the Kerberos mechanism, this is assumed
to be the name of a Kerberos principal in the format principal@realm.

v GSS_C_NT_HOSTBASED_SERVICE - specifies a service that is related to a particular host. For
the Kerberos mechanism, the service name is specified as service@host. The service name is
mapped to the principal service/primary-host@realm using the krb5_sname_to_principal() function.
The primary host name must be associated with a Kerberos realm in order to map the service name
to the proper principal.

v GSS_C_NT_HOSTBASED_SERVICE_X - specifies a service that is related to a particular host.
This is the same as GSS_C_NT_HOSTBASED_SERVICE and should not be used by new
applications.

v GSS_C_NT_MACHINE_UID_NAME - specifies the machine representation of a UID (user
identifier). The getpwuid() function is called to map the UID to a user name. For the Kerberos
mechanism, the IRRSIM00 function is then called to map the user name to a Kerberos principal.
The application must have at least READ access to the IRR.RUSERMAP facility in order to use this
name type.

The uid_t is passed by reference, not by value. That is, the value field contains the address of the
uid_t .

v GSS_C_NT_STRING_UID_NAME - specifies the string representation of a UID (user identifier). The
string value is converted to a numeric value and then the getpwuid() function is called to map the
UID to a user name. For the Kerberos mechanism, the IRRSIM00 function is then called to map the
user name to a Kerberos principal. The application must have at least READ access to the
IRR.RUSERMAP facility in order to use this name type.

v GSS_C_NT_EXPORT_NAME - specifies an exported name created by the gss_export_name()
routine.

v gss_nt_krb5_name - specifies a Kerberos name in the format principal@realm. This name type is
valid only for the Kerberos mechanism.

v gss_nt_krb5_principal - specifies a krb5_principal created by the krb5_parse_name() routine.
This name type is valid only for the Kerberos mechanism.

The krb5_principal is passed by reference, not by value. That is, the value field contains the
address of the krb5_principal .

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 209

Output
output_name

Returns the name in the GSS-API internal format. The internal format contains an internal
representation for each of the supported security mechanisms.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_import_name() routine converts a printable name to the internal GSS-API format. The
gss_name_t object created by this routine can then be used as input to other GSS-API routines. The
gss_name_t object created by the gss_import_name() routine contains an internal representation for
each of the supported security mechanisms.

Status Codes
Table 52. Status Codes for gss_import_name()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_BAD_NAME The input name is not formatted properly as defined by the
name type specification.

GSS_S_BAD_NAMETYPE The name type specified by the input_name_type parameter is
not valid.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

gss_import_sec_context

Purpose
Creates a GSS-API security context from a security context token created by the
gss_export_sec_context() routine.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_import_sec_context (

OM_uint32 *minor_status,
gss_buffer_tcontext_token,
gss_ctx_id_t *context_handle)

Parameters

Input
context_token

Specifies the security context token created by the gss_export_sec_context() routine.

Output
context_handle

Returns the context handle for the security context created from the context token. The
gss_delete_sec_context() routine should be called to delete the security context when it is no longer
needed.

GSS-API interfaces

210 V1R4.0 Network Authentication Service Programming

minor_status
Returns a status code from the security mechanism.

Usage
The gss_import_sec_context() routine accepts a security context token created by the
gss_export_sec_context() routine and creates a GSS-API security context. Since the security context
contains message sequencing information, it is usually not feasible to create multiple security contexts
from a single context token.

The gss_delete_sec_context() routine should be called to delete the GSS-API security context when it is
no longer needed.

The security context token created by one implementation of GSS-API cannot be used with a different
implementation of GSS-API.

Status Codes
Table 53. Status Codes for gss_import_sec_context()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_DEFECTIVE_TOKEN The supplied context token is not valid.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

gss_indicate_mechs

Purpose
Allows an application to determine which security mechanisms are available.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_indicate_mechs (

OM_uint32 * minor_status,
gss_OID_set * mech_set)

Parameters

Output
mech_set

Returns the set of supported security mechanisms. The application should release the gss_OID_set
returned for this parameter by calling the gss_release_oid_set() routine.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_indicate_mechs() routine enables an application to determine which security mechanisms are
available on the local system.

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 211

Status Codes
Table 54. Status Codes for gss_indicate_mechs()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

gss_init_sec_context

Purpose
Initiates a security context for use by two communicating applications.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_init_sec_context (

OM_uint32 * minor_status,
gss_cred_id_t cred_handle,
gss_ctx_id_t * context_handle,
gss_name_t target_name,
gss_OID mech_type,
gss_flags_t req_flags,
OM_uint32 time_req,
gss_channel_bindings_t input_chan_bindings,
gss_buffer_t input_token,
gss_OID * actual_mech_type,
gss_buffer_t output_token,
gss_flags_t * ret_flags,
OM_uint32 * time_rec)

Parameters

Input
cred_handle

Specifies the credential handle of the GSS-API credential used to initiate the security context. The
specified credential must be either an INITIATE or BOTH credential. Specify
GSS_C_NO_CREDENTIAL to use the default credential obtained from the current login context.

target_name
Specifies the name of the context acceptor. This must be a Kerberos service name if delegation is
requested for the Kerberos security mechanism. Otherwise, it can be any principal defined in the
security registry, subject to registry policy rules.

mech_type
Specifies the desired security mechanism:

v gss_mech_krb5_old - Beta Kerberos V5 mechanism

v gss_mech_krb5 - Kerberos V5 mechanism

v GSS_C_NO_OID - Default mechanism. For the z/OS Kerberos implementation of GSS-API, this is
the Kerberos V5 mechanism.

req_flags
Specifies a bitmask containing independent flags representing requested GSS services. GSS-API does
not guarantee that a requested service is available on all systems. The application should check the

GSS-API interfaces

212 V1R4.0 Network Authentication Service Programming

ret_flags parameter to determine which of the requested services are actually provided for the context.
The following symbolic definitions are provided to correspond to each flag. The symbolic names should
be logically ORed to form the bitmask value.

v GSS_C_DELEG_FLAG - Request delegated credentials for use by the context acceptor

v GSS_C_MUTUAL_FLAG - Request mutual authentication to validate the identity of the context
acceptor

v GSS_C_REPLAY_FLAG - Request message replay detection for signed or sealed messages

v GSS_C_SEQUENCE_FLAG - Request message sequence checking for signed or sealed messages

v GSS_C_ANON_FLAG - Request initiator anonymity. This flag is ignored in the current GSS-API
implementation since the Kerberos mechanism does not support initiator anonymity.

time_req
Specifies the desired number of seconds that the security context remains valid. Specify zero for the
default lifetime of 2 hours. Specify GSS_C_INDEFINITE to request the maximum lifetime.

input_chan_bindings
Specifies the bindings describing the communications channel to be used between the communicating
applications. The channel bindings information is placed into the output token generated by the
gss_init_sec_context() routine and is validated by the gss_accept_sec_context() routine. Specify
GSS_C_NO_CHANNEL_BINDINGS if there are no channel bindings.

input_token
Specifies the token received from the context acceptor. GSS_C_NO_BUFFER should be specified if
this is the first call to the gss_init_sec_context() routine.

Input/Output
context_handle

Specifies the context handle for the context. The first time that the context initiator calls the
gss_init_sec_context() routine, the context handle must be set to GSS_C_NO_CONTEXT. For
subsequent calls to continue setting up the context, the context handle must be the value returned by
the previous call to the gss_init_sec_context() routine.

Output
actual_mech_type

Returns the security mechanism to be used with the context. The gss_OID value returned for this
parameter points to read-only storage and must not be released by the application. Specify NULL for
this parameter if the actual mechanism type is not needed.

output_token
Returns a token to be sent to the context acceptor. If no token is to be sent to the context acceptor,
the gss_init_sec_context() routine sets the output_token length field to zero. Otherwise, the
output_token length and value fields are set. The application should release the output token when it
is no longer needed by calling the gss_release_buffer() routine.

ret_flags
Returns a bitmask containing independent flags indicating which GSS services are available for the
context. Specify NULL for this parameter if the flags are not needed. The following symbolic definitions
are provided to test the individual flags and should be logically ANDed with the value of ret_flags to
test whether the context supports the service options.

v GSS_C_DELEG_FLAG - Delegated credentials are available to the context acceptor

v GSS_C_MUTUAL_FLAG - Mutual authentication will be performed. The gss_accept_sec_context()
routine generates an output token that the context acceptor must return to the context initiator to
complete the security context setup.

v GSS_C_REPLAY_FLAG - Message replay detection will be performed

v GSS_C_SEQUENCE_FLAG - Message sequence checking will be performed

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 213

v GSS_C_CONF_FLAG - Message confidentiality services are available

v GSS_C_INTEG_FLAG - Message integrity services are available

v GSS_C_ANON_FLAG - The initiator identity will not be provided to the context acceptor

v GSS_C_PROT_READY_FLAG - If this flag is set, protection services, as specified by the states of
the GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG, are available for use if the accompanying
major status return value is GSS_S_COMPLETE or GSS_S_CONTINUE_NEEDED. Otherwise,
protection services are available for use only if the accompanying major status return value is
GSS_S_COMPLETE.

v GSS_C_TRANS_FLAG - If this flag is set, the gss_export_sec_context() function can be used to
export the security context. The gss_export_sec_context() function is not available if this flag is
not set.

time_rec
Return the number of seconds the context remains valid. If the mechanism does not support context
expiration, the return value is GSS_C_INDEFINITE. Specify NULL for this parameter if the context
expiration time is not required.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_init_sec_context() routine is the first step in the establishment of a security context between the
context initiator and the context acceptor. To ensure the portability of the application, use the default
credential by specifying GSS_C_NO_CREDENTIAL for the cred_handle parameter.

The first time the application calls the gss_init_sec_context() routine, the input_token parameter should
either be specified as GSS_C_NO_BUFFER or the buffer length field should be set to zero. If no token
needs to be sent to the context acceptor, the gss_init_sec_context() routine sets the output_token length
field to zero.

To finish establishing the context, the calling application can require one or more tokens from the context
acceptor. If the application requires reply tokens, the gss_init_sec_context() routine returns
GSS_S_CONTINUE_NEEDED in the supplementary information portion of the major status value. The
application must call the gss_init_sec_context() routine again when it receives the reply token from the
context acceptor and pass the token by way of the input_token parameter. When the
gss_init_sec_context() routine is called to continue processing a context, the same request values must
be used as for the initial call.

The availability of confidentiality services is dependent upon the underlying security mechanism and the
features that have been installed on the system. The GSS_C_CONF_FLAG is returned only if
confidentiality services are available on the local system. However, this does not guarantee that
confidentiality services are also available on the remote system. If confidentiality services are available on
the local system but not on the remote system, an error is returned by the gss_unwrap() routine on the
remote system if an encrypted message is received (that is, confidentiality was requested on the call to the
gss_wrap() routine on the local system).

Whenever the routine returns a major status that includes the value GSS_S_CONTINUE_NEEDED, the
context is not fully established and the following restrictions apply to the output parameters:

v The value returned by the time_rec parameter is undefined.

v Unless the accompanying ret_flags parameter contains the bit GSS_C_PROT_READY_FLAG, indicating
that per-message services may be applied in advance of a successful completion status, the value
returned by the actual_mech_type parameter is undefined until the routine returns a major status value
of GSS_S_COMPLETE.

v The values of the GSS_C_DELEG_FLAG, GSS_C_MUTUAL_FLAG, GSS_C_REPLAY_FLAG,
GSS_C_SEQUENCE_FLAG, GSS_C_CONF_FLAG, GSS_C_INTEG_FLAG, and GSS_C_ANON_FLAG

GSS-API interfaces

214 V1R4.0 Network Authentication Service Programming

bits returned by the ret_flags parameter contain the values that would be returned if the context
establishment were to succeed. In particular, if the application has requested a service such as
delegation or anonymous authentication by means of the req_flags parameter, and such a service is
unavailable from the underlying mechanism, gss_init_sec_context() generates a token that does not
provide the service and indicates through the ret_flags parameter that the service is not supported. The
application may choose to stop the context establishment by calling gss_delete_sec_context() or it
may choose to transmit the token and continue context establishment.

v The value of the GSS_C_PROT_READY_FLAG bit returned by the ret_flags parameter indicates the
actual state at the time gss_init_sec_context() returns, whether or not the context is fully established.

Kerberos Mechanism
In order for delegation to be used, the target principal name must be a service name. A service name is
created by calling the gss_import_name() routine with the name type specified as
GSS_C_NT_HOSTBASED_SERVICE (object identifier {1 2 840 113554 1 2 1 4}). The service name is
specified as name@host and results in a Kerberos principal of name/host@host-realm. The local host
name is used if no host is specified. If a host name alias is specified, the primary host name returned by
the domain name service is used when constructing the principal name. The target principal name is not
required to be a service name if the ticket-granting ticket (TGT) does not contain a client address list. You
can obtain a TGT without a client address list by specifying the - A option on the kinit command.
Otherwise, the service name must correctly identify the host the target service is running on.

The requested context lifetime is used to specify the endtime when obtaining a Kerberos service ticket to
the target application. The actual context lifetime is then set to the lifetime of the ticket, which may be less
than the requested lifetime as determined by the registry policy.

If delegation is requested, the TGT contained in the login context must allow forwardable tickets. If the
TGT is not forwardable, the gss_init_sec_context()) request will be successful but the
GSS_C_DELEG_FLAG will not be set in the returned flags. In addition, the service ticket obtained for the
target principal must allow delegation. If the target server is not enabled for delegation, the
gss_init_sec_context() request will be successful but the GSS_C_DELEG_FLAG will not be set in the
returned flags. You can use the klist command with the -f option to display the ticket flags. The TGT must
have the F flag set and the service ticket must have the O flag set.

Status Codes
Table 55. Status Codes for gss_init_sec_context()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_BAD_BINDINGS The channel bindings are not valid.

GSS_S_BAD_MECH The request security mechanism is not supported

GSS_S_BAD_NAME The target_name parameter is not valid.

GSS_S_BAD_SIG The input token contains an incorrect integrity check value.

GSS_S_CONTINUE_NEEDED To complete the context, the gss_init_sec_context() routine
must be called again with a token created by the
gss_accept_sec_context() routine.

GSS_S_CREDENTIALS_EXPIRED The supplied credentials are no longer valid.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS_S_DEFECTIVE_CREDENTIAL Consistency checks performed on the credential failed.

GSS_S_DEFECTIVE_TOKEN Consistency checks performed on the input token failed.

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 215

Table 55. Status Codes for gss_init_sec_context() (continued)

Status Code Meaning

GSS_S_DUPLICATE_TOKEN The token is a duplicate of a token that has already been
processed.

GSS_S_NO_CONTEXT The supplied context handle does not refer to a valid context.

GSS_S_NO_CRED The supplied credential handle does not refer to a valid
credential, the supplied credential is not valid for context
initiation, or there are no default credentials available.

GSS_S_OLD_TOKEN The token is too old to be checked for duplication against tokens
that have already been processed.

gss_inquire_context

Purpose
Returns information about a security context.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_inquire_context (

OM_uint32 * minor_status,
gss_ctx_id_t context_handle,
gss_name_t * src_name,
gss_name_t * tgt_name,
OM_uint32 * lifetime,
gss_OID * mech_type,
gss_flags_t * ret_flags,
int * local,
int * open)

Parameters

Input
context_handle

Specifies the handle for the security credential.

Output
src_name

Returns the principal name associated with the context initiator. Specify NULL for this parameter if the
principal name is not required.

tgt_name
Returns the principal name associated with the context acceptor. Specify NULL for this parameter if
the principal name is not required.

lifetime
Returns the number of seconds the context remains valid. Specify NULL for this parameter if the
context lifetime is not required. The returned value is GSS_C_INDEFINITE if the security mechanism
does not support context expiration. The returned value is 0 if the context is expired.

mech_type
Returns the mechanism used to create the security context. The gss_OID value returned for this
parameter points to read-only storage and must not be released by the application. Specify NULL for
this parameter if the mechanism type is not required.

GSS-API interfaces

216 V1R4.0 Network Authentication Service Programming

|
|
|

ret_flags
Returns a bitmask containing independent flags indicating which GSS services are available for the
context. Specify NULL for this parameter if the available service flags are not required. The following
symbolic definitions are provided to test the individual flags and should be logically ANDed with the
value of ret_flags to test whether the context supports the service options.

v GSS_C_DELEG_FLAG - Delegated credentials are available to the context acceptor.

v GSS_C_MUTUAL_FLAG - Mutual authentication will be performed. The gss_accept_sec_context()
routine generates an output token that the context acceptor must return to the context initiator to
complete the security context setup.

v GSS_C_REPLAY_FLAG - Message replay detection will be performed

v GSS_C_SEQUENCE_FLAG - Message sequence checking will be performed.

v GSS_C_CONF_FLAG - Message confidentiality services are available.

v GSS_C_INTEG_FLAG - Message integrity services are available.

v GSS_C_ANON_FLAG - The initiator identity will not be provided to the context acceptor.

v GSS_C_PROT_READY_FLAG - If set, protection services, as specified by the states of the
GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG bits, are available for use even if the context is
not fully established. Otherwise, protection services are available only if the value returned by the
open parameter is TRUE.

v GSS_C_TRANS_FLAG - If this flag is set, the gss_export_sec_context() function can be used to
export the security context. The gss_export_sec_context() function is not available if this flag is
not set.

local
Returns TRUE if the context was initiated locally and FALSE otherwise. Specify NULL for this
parameter if the local indication is not required.

open
Returns TRUE if context establishment has been completed and FALSE otherwise. Specify NULL for
this parameter if the open indication is not required.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_inquire_context() routine provides information about a security context to the calling application.

Status Codes
Table 56. Status Codes for gss_inquire_context()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS_S_NO_CONTEXT The context referred to does not exist.

gss_inquire_cred

Purpose
Returns information about a GSS-API credential.

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 217

|
|
|

Format
#include <skrb/gssapi.h>
OM_uint32 gss_inquire_cred (

OM_uint32 * minor_status,
gss_cred_id_t cred_handle,
gss_name_t * name,
OM_uint32 * lifetime,
gss_cred_usage_t * cred_usage,
gss_OID_set * mechanisms)

Parameters

Input
cred_handle

Specifies the handle for the GSS-API credential. Specify GSS_C_NO_CREDENTIAL to get information
about the default credential for the default security mechanism.

Output
name

Returns the principal name associated with the credential. Specify NULL for this parameter if the
principal name is not required. The name should be released when it is no longer needed by calling
the gss_release_name() routine.

lifetime
Returns the number of seconds the credential remains valid. The return value is set to zero if the
credential has expired. Specify NULL for this parameter if the credential lifetime is not required.

cred_usage
Returns one of these values describing how the application can use the credential. Specify NULL for
this parameter if the credential usage is not required.

v GSS_C_INITIATE - the application may initiate a security context

v GSS_C_ACCEPT - the application may accept a security context

v GSS_C_BOTH - the application may both initiate and accept security contexts

mechanisms
Returns the set of security mechanisms supported by the credential. Specify NULL for this parameter if
the mechanism set is not required. The gss_OID_set returned for this parameter should be released
when it is no longer needed by calling the gss_release_oid_set() routine.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_inquire_cred() routine provides information about a GSS-API credential to the calling application.
If GSS_C_NO_CREDENTIAL is specified for the cred_handle parameter, the default security mechanism
is used to process the request.

Status Codes
Table 57. Status Codes for gss_inquire_cred()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_CREDENTIALS_EXPIRED The credentials have expired. Credential information will still be
returned for an expired credential but the lifetime value will be
returned as zero.

GSS-API interfaces

218 V1R4.0 Network Authentication Service Programming

|
|
|
|

Table 57. Status Codes for gss_inquire_cred() (continued)

Status Code Meaning

GSS_S_DEFECTIVE_CREDENTIAL The credentials are not valid.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS_S_NO_CRED The cred_handle does not refer to a valid credential or there are
no default credentials available.

gss_inquire_cred_by_mech

Purpose
Returns information about a GSS-API credential for a single security mechanism.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_inquire_cred_by_mech (

OM_uint32 * minor_status,
gss_cred_id_t cred_handle,
gss_OID mech_type,
gss_name_t * name,
OM_uint32 * init_lifetime,
OM_uint32 * accept_lifetime,
gss_cred_usage_t * cred_usage)

Parameters

Input
cred_handle

Specifies the handle for the GSS-API credential. Specify GSS_C_NO_CREDENTIAL to get information
about the default credential for the specified security mechanism.

mech_type
Specifies the mechanism to be used to obtain the return information as follows:

v gss_mech_krb5_old - Beta Kerberos V5 mechanism

v gss_mech_krb5 - Kerberos V5 mechanisms

Output
name

Returns the principal name associated with the credential. Specify NULL for this parameter if the
principal name is not required. The name should be released when it is no longer needed by calling
the gss_release_name() routine.

init_lifetime
Returns the number of seconds the credential remains valid for initiating contexts. Specify NULL for
this parameter if the credential lifetime is not required.

accept_lifetime
Returns the number of seconds the credential remains valid for accepting contexts. Specify NULL for
this parameter if the credential lifetime is not required.

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 219

|
|
|
|

cred_usage
Returns one of the following values describing how the application can use the credential. Specify
NULL for this parameter if the credential usage is not required.

v GSS_C_INITIATE - the application may initiate a security context

v GSS_C_ACCEPT - the application may accept a security context

v GSS_C_BOTH - the application may both initiate and accept security contexts

minor_status
Returns a status code from the security mechanism.

Usage
The gss_inquire_cred_by_mech() routine provides information about a GSS-API credential to the calling
application. The information is obtained using the specified security mechanism.

Status Codes
Table 58. Status Codes for gss_inquire_cred_by_mech()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_BAD_MECH The requested mechanism is not supported.

GSS_S_CREDENTIALS_EXPIRED The credentials have expired. Credential information is still
returned for an expired credential but the lifetime value is
returned as zero.

GSS_S_DEFECTIVE_CREDENTIAL The credentials are not valid.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS_S_NO_CRED The cred_handle does not refer to a valid credential or there are
no default credentials available.

gss_inquire_mechs_for_name

Purpose
Returns the mechanisms with which a name may be processed.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_inquire_mechs_for_name (

OM_uint32 * minor_status,
gss_name_t input_name,
gss_OID_set * ech_types)

Parameters

Input
input_names

Specifies the name to be queried.

GSS-API interfaces

220 V1R4.0 Network Authentication Service Programming

Output
mech_types

Returns the mechanisms that can be used with the specified name. The gss_OID_set returned for this
parameter should be released by calling the gss_release_oid_set() routine when it is no longer
needed.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_inquire_mechs_for_name() routine returns the set of mechanisms that can be used with a
given name.

Status Codes
Table 59. Status Codes for gss_inquire_mechs_for_name()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_BAD_NAME The supplied name is not valid.

GSS_S_BAD_NAMETYPE The name type is not supported.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

gss_inquire_names_for_mech

Purpose
Returns the name types supported by a security mechanism.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_inquire_names_for_mech (

OM_uint32 * minor_status,
gss_OID mech_type,
gss_OID_set * mech_names)

Parameters

Input
mech_type

Specifies the mechanism to be queried as follows:

v gss_mech_krb5_old - Beta Kerberos V5 mechanism

v gss_mech_krb5 - Kerberos V5 mechanism

Output
mech_names

Returns the name types supported by the specified mechanism. The gss_OID_set returned for this
parameter should be released by calling the gss_release_oid_set() routine when it is no longer
needed.

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 221

minor_status
Returns a status code from the security mechanism.

Usage
The gss_inquire_names_for_mech() routine returns the set of name types that are supported by a
particular security mechanism.

Status Codes
Table 60. Status Codes for gss_inquire_names_for_mech()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_BAD_MECH The requested mechanism is not supported.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

gss_oid_to_str

Purpose
Converts a gss_OID object to a string representation of the object identifier.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_oid_to_str (

OM_uint32 * minor_status,
gss_OID input_oid,
gss_buffer_t output_string)

Parameters

Input
input_oid

Specifies the gss_OID to be converted.

Output
output_string

Returns the string representation of the object identifier. The gss_buffer_t returned for this parameter
should be released by calling the gss_release_buffer() routine when it is no longer needed.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_oid_to_str() routine converts a gss_OID object to a string representation of the object identifier.
The string representation consists of a series of blank-separated numbers enclosed in braces. The
gss_str_to_oid() routine can be used to convert the string representation back to a gss_OID object.

GSS-API interfaces

222 V1R4.0 Network Authentication Service Programming

Status Codes
Table 61. Status Codes for gss_oid_to_str()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

gss_process_context_token

Purpose
Processes a context token received from the partner application.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_process_context_token (

OM_uint32 * minor_status,
gss_ctx_id_t context_handle,
gss_buffer_t input_token)

Parameters

Input
context_handle

Specifies the context to be used when processing the token.

input_token
Specifies the token received from the partner application.

Output
minor_status

Returns a status code from the security mechanism.

Usage
The gss_process_context_token() routine processes tokens generated by the partner application.
Tokens are usually associated with either the context establishment or with message security services. If
the tokens are associated with the context establishment, they are processed by the
gss_init_sec_context() and gss_accept_sec_context() routines. If the tokens are associated with
message security services, they are processed by the gss_verify_mic() and gss_unwrap() routines.
Tokens generated by the gss_delete_sec_context() routine, however, are processed by the
gss_process_context_token() routine.

Status Codes
Table 62. Status Codes for gss_process_context_token()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_BAD_SIG The token signature was not correct.

GSS_S_DEFECTIVE_TOKEN Consistency checks performed on the input token failed.

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 223

Table 62. Status Codes for gss_process_context_token() (continued)

Status Code Meaning

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS_S_NO_CONTEXT The context handle does not refer to a valid security context.

gss_release_buffer

Purpose
Releases storage associated with a gss_buffer_t buffer. The gss_buffer_desc structure itself is not
released.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_release_buffer (

OM_uint32 * minor_status,
gss_buffer_t buffer)

Parameters

Input/Output
buffer

The buffer to be released. Upon successful completion, the length and value fields will be set to zero.

Output
minor_status

Returns a status code from the security mechanism.

Usage
The gss_release_buffer() routine releases storage associated with a gss_buffer_t buffer. It does not
release the storage for the gss_buffer_desc structure itself.

Status Codes
Table 63. Status Codes for gss_release_buffer()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

gss_release_cred

Purpose
Releases local data structures associated with a GSS-API credential.

GSS-API interfaces

224 V1R4.0 Network Authentication Service Programming

Format
#include <skrb/gssapi.h>
OM_uint32 gss_release_cred (

OM_uint32 * minor_status,
gss_cred_id_t * cred_handle)

Parameters

Input/Output
cred_handle

Specifies the credential to be released. Upon successful completion, the cred_handle value is set to
GSS_C_NO_CREDENTIAL. If the cred_handle value is GSS_C_NO_CREDENTIAL, the major status
is set to GSS_S_COMPLETE and nothing is released.

Output
minor_status

Returns a status code from the security mechanism.

Usage
The gss_release_cred() routine releases the local data structures for the specified credential. If
GSS_C_NO_CREDENTIAL is specified for the cred_handle parameter, no credential is released and
GSS_S_COMPLETE is returned for the major status.

Status Codes
Table 64. Status Codes for gss_release_cred()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_DEFECTIVE_CREDENTIAL Consistency checks performed on the credential structure failed.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS_S_NO_CRED The cred_handle parameter does not refer to a valid credential.

gss_release_name

Purpose
Releases storage associated with a gss_name_t internal name.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_release_name (

OM_uint32 * minor_status,
gss_name_t * name)

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 225

Parameters

Input/Output
name

Specifies the name to be released. Upon successful completion, the name value is set to
GSS_C_NO_NAME

Output
minor_status

Returns a status code from the security mechanism.

Usage
The gss_release_name() routine releases storage associated with a GSS-API internal name.

Status Codes
Table 65. Status Codes for gss_release_name()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_BAD_NAME The specified name is not valid.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

gss_release_oid

Purpose
Releases the storage associated with a gss_OID object.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_release_oid (

OM_uint32 * minor_status,
gss_OID * oid)

Parameters

Input/Output
oid

Specifies the gss_OID to be released. Upon successful completion, the oid value is set to
GSS_C_NO_OID.

Output
minor_status

Returns a status code from the security mechanism.

Usage
The gss_release_oid() routine releases the storage associated with a gss_OID object.

GSS-API interfaces

226 V1R4.0 Network Authentication Service Programming

Status Codes
Table 66. Status Codes for gss_release_oid()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

gss_release_oid_set

Purpose
Releases the storage associated with a gss_OID_set object.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_release_oid_set (

OM_uint32 * minor_status,
gss_OID_set * oid_set)

Parameters

Input/Output
oid_set

Specifies the gss_OID_set to be released. Upon successful completion, the oid_set value is set to
GSS_C_NO_OID_SET.

Output
minor_status

Returns a status code from the security mechanism.

Usage
The gss_release_oid_set() routine releases the storage associated with a gss_OID_set object.

Status Codes
Table 67. Status Codes for gss_release_oid_set()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

gss_str_to_oid

Purpose
Converts the string representation of an object identifier to a gss_OID object.

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 227

Format
#include <skrb/gssapi.h>
OM_uint32 gss_str_to_oid (

OM_uint32 * minor_status,
gss_buffer_t input_string,
gss_OID * output_oid)

Parameters

Input
input_string

Specifies the string to be converted.

Output
output_oid

Returns the object identifier. The gss_OID returned for this parameter should be released by calling
the gss_release_oid() routine when it is no longer needed.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_str_to_oid() routine converts the string representation of an object identifier to a gss_OID object.
The string representation is a series of blank-separated or period-separated numbers enclosed in braces.
For example, the Kerberos V5 security mechanism object identifier is represented as {1 2 840 113554 1 2
2}.

While the blank-separated form should be used for portability, the gss_str_to_oid() routine also accepts
the period-separated form for compatibility with other applications. However, the gss_oid_to_str() routine
always generates the blank-separated form.

Status Codes
Table 68. Status Codes for gss_str_to_oid()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

gss_test_oid_set_member

Purpose
Checks an OID set to see if a specified OID is in the set.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_test_oid_set_member (

OM_uint32 * minor_status,
gss_OID member_oid,
gss_OID_set oid_set,
int * is_present)

GSS-API interfaces

228 V1R4.0 Network Authentication Service Programming

Parameters

Input
member_oid

Specifies the OID to search for in the OID set.

oid_set
Specifies the OID set to check.

Output
is_present

Is set to 1 if the OID is a member of the OID set and to zero otherwise.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_test_oid_set_member() routine checks an OID set to see if the specified OID is a member of
the set. The gss_create_empty_oid_set() routine can be used to create an empty OID set and the
gss_add_oid_set_member() routine can be used to add an OID to an existing OID set.

Status Codes
Table 69. Status Codes for gss_test_oid_set_member()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

gss_unwrap

Purpose
Unwraps a message sealed by the gss_wrap() routine and verifies the embedded signature.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_unwrap (

OM_uint32 * minor_status,
gss_ctx_id_t context_handle,
gss_buffer_t input_message,
gss_buffer_t output_message,
int * conf_state,
gss_qop_t * qop_state)

Parameters

Input
context_handle

Specifies the context on which the message arrived.

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 229

input_message
Specifies the sealed message token generated by the gss_wrap() routine.

Output
output_message

Returns the unsealed message.

conf_state
Returns the level of confidentiality applied to the message. Specify NULL for this parameter if the
confidentiality state is not needed. The return value is:

v TRUE - Both confidentiality and integrity services were applied.

v FALSE - Only integrity services were applied.

qop_state
Returns the quality of protection applied to the message. Specify NULL for this parameter if the quality
of protection is not needed.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_unwrap() routine extracts a message from the sealed token created by the gss_wrap() routine
and verifies the embedded signature. The conf_state return parameter indicates whether the message had
been encrypted.

Status Codes
Table 70. Status Codes for gss_unwrap()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_BAD_SIG The token signature is not correct.

GSS_S_CONTEXT_EXPIRED The context referred to has expired.

GSS_S_CREDENTIALS_EXPIRED The credentials associated with the context referred to have
expired.

GSS_S_DEFECTIVE_TOKEN Consistency checks performed on the input token failed.

GSS_S_DUPLICATE_TOKEN The token is a duplicate of a token that has already been
processed.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS_S_GAP_TOKEN One or more predecessor tokens have not been processed.

GSS_S_NO_CONTEXT The context referred to is not valid.

GSS_S_OLD_TOKEN The token is too old to be checked for duplication against tokens
that have already been processed.

GSS_S_UNSEQ_TOKEN A later token has already been processed.

gss_verify_mic

Purpose
Verifies that the cryptographic signature for a message is correct.

GSS-API interfaces

230 V1R4.0 Network Authentication Service Programming

Format
#include <skrb/gssapi.h>
OM_uint32 gss_verify_mic (

OM_uint32 * minor_status,
gss_ctx_id_t context_handle,
gss_buffer_t input_message,
gss_buffer_t input_token,
gss_qop_t * qop_state)

Parameters

Input
context_handle

Specifies the context on which the message arrived.

input_message
Specifies the message to be verified.

input_token
Specifies the signature token generated by the gss_get_mic() routine.

Output
qop_state

Returns the quality of protection that was applied to the message. Specify NULL for this parameter if
the quality of protection is not needed.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_verify_mic() routine checks that the encrypted signature is the correct signature for the supplied
message. This ensures that the message has not been modified since the signature was generated.

Status Codes
Table 71. Status Codes for gss_verify_mic()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_BAD_SIG The input token is not valid.

GSS_S_CONTEXT_EXPIRED The context referred to has expired.

GSS_S_CREDENTIALS_EXPIRED The credentials associated with the context referred to have
expired.

GSS_S_DEFECTIVE_CREDENTIAL The credential is defective.

GSS_S_DEFECTIVE_TOKEN Consistency checks performed on the input token failed

GSS_S_DUPLICATE_TOKEN The input token is a duplicate of a token that has already been
processed.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS_S_GAP_TOKEN One or more predecessor tokens have not been processed.

GSS_S_NO_CONTEXT The context referred to is not valid.

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 231

Table 71. Status Codes for gss_verify_mic() (continued)

Status Code Meaning

GSS_S_OLD_TOKEN The input token is too old to be checked for duplication against
tokens that have already been processed.

GSS_S_UNSEQ_TOKEN A later token has already been processed.

gss_wrap

Purpose
Cryptographically signs and optionally encrypts a message.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_wrap (

OM_uint32 * minor_status,
gss_ctx_id_t context_handle,
int conf_req_flag,
gss_qop_t qop_req,
gss_buffer_t input_message,
int * conf_state,
gss_buffer_t output_message)

Parameters

Input
context_handle

Specifies the context to be associated with the message when it is sent to the partner application.

conf_req_flag
Specifies the requested level of confidentiality and integrity services as follows:

v TRUE - Both confidentiality and integrity services are requested.

v FALSE - Only integrity services are requested.

qop_req
Specifies the requested quality of protection for the message. Specify GSS_C_QOP_DEFAULT to use
the default quality of protection as defined by the selected security mechanism.

GSS_C_QOP_DEFAULT should always be specified unless it is necessary to select a specific
quality-of-protection algorithm, in which case the application must ensure that the selected algorithm is
compatible with the security mechanism associated with the security context.

The Kerberos security mechanism supports four integrity algorithms and two sealing algorithms. The
quality of protection value is formed by or’ing together one of the integrity algorithm values and one of
the sealing algorithm values The default algorithms can be requested by specifying
GSS_C_QOP_DEFAULT, which is equivalent to specifying GSS_KRB5_INTEG_C_QOP_DEFAULT or
GSS_KRB5_CONF_C_QOP_DEFAULT.

The integrity algorithms are:

v GSS_KRB5_INTEG_C_QOP_DEFAULT - Default integrity algorithm (QOP_DES_MD5 for a DES
session key or QOP_HMAC_SHA1 for a DES3 session key)

v GSS_KRB5_INTEG_C_QOP_MD5 - Truncated MD5 checksum

v GSS_KRB5_INTEG_C_QOP_DES_MD5 - DES_MAC of an MD5 hash

v GSS_KRB5_INTEG_C_QOP_DES_MAC - DES_MAC checksum

v GSS_KRB5_INTEG_C_QOP_HMAC_SHA1 - DES3_HMAC of SHA1 checksum

GSS-API interfaces

232 V1R4.0 Network Authentication Service Programming

The sealing algorithms:

v GSS_KRB5_CONF_C_QOP_DEFAULT - Default sealing algorithm (QOP_DES for a DES session
key or QOP_DES3_KD for a DES3 session key)

v GSS_KRB5_CONF_C_QOP_DES - DES encryption

v GSS_KRB5_CONF_C_QOP_DES3_KD - DES3 encryption with key derivation

The encryption key associated with the security context determines which quality-of-protection
algorithms are available. The GSS_KRB5_INTEG_C_QOP_MD5,
GSS_KRB5_INTEG_C_QOP_DES_MD5, GSS_KRB5_INTEG_C_QOP_DES_MAC, and
GSS_KRB5_CONF_C_QOP_DES algorithms require a 56-bit DES key. The
GSS_KRB5_INTEG_C_QOP_HMAC_SHA1 and GSS_KRB5_CONF_C_QOP_DES3_KD algorithms
require a 168-bit DES3 key.

input_message
Specifies the message to be wrapped.

Output
conf_state

Returns the level of confidentiality that was applied to the message. Specify NULL for this parameter if
the confidentiality state is not required. The return value is:

v TRUE - Both confidentiality and integrity services have been applied.

v FALSE - Only integrity services have been applied.

output_message
Returns the wrapped message. The buffer should be released when it is no longer needed by calling
the gss_release_buffer() routine.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_wrap() routine cryptographically signs and optionally encrypts a message. The token returned in
the output_message parameter contains both the signature and the message. This token is then sent to
the partner application, which calls the gss_unwrap() routine to extract the original message and verify its
authenticity.

If confidentiality is requested (the conf_req_flag is TRUE) but confidentiality services are not available for
the security context, no error is returned and only integrity services are performed. The conf_state return
parameter indicates whether the requested confidentiality services were performed.

Status Codes
Table 72. Status Codes for gss_wrap()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_BAD_QOP The quality of protection value is not valid.

GSS_S_CONTEXT_EXPIRED The context referred to has expired.

GSS_S_CREDENTIALS_EXPIRED The credentials associated with the context referred to have
expired.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 233

Table 72. Status Codes for gss_wrap() (continued)

Status Code Meaning

GSS_S_NO_CONTEXT The context referred to is not valid.

gss_wrap_size_limit

Purpose
Determines that largest message that can be wrapped without exceeding a maximum size limit.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_wrap_size_limit (

OM_uint32 * minor_status,
gss_ctx_id_t context_handle,
int conf_req,
gss_qop_t qop_req,
OM_uint32 tsize_req,

OM_uint32 * max_size)

Parameters

Input
context_handle

Specifies the security context associated with the messages.

conf_req
Specifies whether confidentiality services are requested for the messages as follows:

v TRUE - Confidentiality services are requested in addition to integrity and authentication services.

v FALSE - Only integrity and authentication services are requested.

qop_req
Specifies the quality of protection to be used for the messages. Specify GSS_C_QOP_DEFAULT to
use the default quality of protection as defined by the selected security mechanism.

GSS_C_QOP_DEFAULT should always be specified unless it is necessary to select a specific
quality-of-protection algorithm, in which case the application must ensure that the selected algorithm is
compatible with the security mechanism associated with the security context.

The Kerberos security mechanism supports four integrity algorithms and two sealing algorithms. The
quality of protection value is formed by or’ing together one of the integrity algorithm values and one of
the sealing algorithm values The default algorithms can be requested by specifying
GSS_C_QOP_DEFAULT, which is equivalent to specifying GSS_KRB5_INTEG_C_QOP_DEFAULT or
GSS_KRB5_CONF_C_QOP_DEFAULT.

The integrity algorithms are:

v GSS_KRB5_INTEG_C_QOP_DEFAULT - Default integrity algorithm (QOP_DES_MD5 for a DES
session key or QOP_HMAC_SHA1 for a DES3 session key)

v GSS_KRB5_INTEG_C_QOP_MD5 - Truncated MD5 checksum

v GSS_KRB5_INTEG_C_QOP_DES_MD5 - DES_MAC of an MD5 hash

v GSS_KRB5_INTEG_C_QOP_DES_MAC - DES_MAC checksum

v GSS_KRB5_INTEG_C_QOP_HMAC_SHA1 - DES3_HMAC of SHA1 checksum

The sealing algorithms:

GSS-API interfaces

234 V1R4.0 Network Authentication Service Programming

v GSS_KRB5_CONF_C_QOP_DEFAULT - Default sealing algorithm (QOP_DES for a DES session
key or QOP_DES3_KD for a DES3 session key)

v GSS_KRB5_CONF_C_QOP_DES - DES encryption

v GSS_KRB5_CONF_C_QOP_DES3_KD - DES3 encryption with key derivation

The encryption key associated with the security context determines which quality-of-protection
algorithms are available. The GSS_KRB5_INTEG_C_QOP_MD5,
GSS_KRB5_INTEG_C_QOP_DES_MD5, GSS_KRB5_INTEG_C_QOP_DES_MAC, and
GSS_KRB5_CONF_C_QOP_DES algorithms require a 56-bit DES key. The
GSS_KRB5_INTEG_C_QOP_HMAC_SHA1 and GSS_KRB5_CONF_C_QOP_DES3_KD algorithms
require a 168-bit DES3 key.

size_req
Specifies the maximum output token size.

Output
max_size

Returns the maximum message size that can be processed without exceeding the specified maximum
token size.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_wrap_size_limit() routine returns the maximum input message size that can be processed by
the gss_wrap() routine without exceeding the specified output token size.

Status Codes
Table 73. Status Codes for gss_wrap_size_limit()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_BAD_QOP The quality of protection requested is not valid.

GSS_S_CONTEXT_EXPIRED The context referred to has expired.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS_S_NO_CONTEXT The context referred to does not exist.

GSS-API interfaces

Chapter 5. GSS-API programming interfaces 235

GSS-API interfaces

236 V1R4.0 Network Authentication Service Programming

Chapter 6. GSS-API programming interfaces - Kerberos
mechanism

gss_krb5_acquire_cred_ccache

Purpose
Acquires a GSS-API credential using a Kerberos credentials cache.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_krb5_acquire_cred_ccache (

OM_uint32 * minor_status,
krb5_ccache ccache,
OM_uint32 time_req,
gss_cred_usage_t cred_usage,
gss_cred_id_t * output_cred_handle,
OM_uint32 * time_rec)

Parameters

Input
ccache

Specifies the Kerberos credentials cache to be used for the credential. The principal name for the
GSS-API credential is obtained from the credentials cache. The credentials cache must contain a valid
ticket-granting ticket for this principal if a GSS_C_INITIATE or GSS_C_BOTH credential is requested.

time_req
Specifies the number of seconds that the credential remains valid. Specify GSS_C_INDEFINITE to
request the maximum credential lifetime. Specify zero for the default lifetime of 2 hours. The actual
credential lifetime is limited by the lifetime of the underlying ticket-granting ticket for GSS_C_INITIATE
and GSS_C_BOTH credentials.

cred_usage
Specifies the desired credential usage as follows:

v GSS_C_INITIATE if the credential can be used only to initiate security contexts.

v GSS_C_ACCEPT if the credential can be used only to accept security contexts.

v GSS_C_BOTH if the credential can be used to both initiate and accept security contexts.

Output
output_cred_handle

Returns the handle for the GSS-API credential.

time_rec
Returns the number of seconds the credential remains valid. If the time remaining is not required,
specify NULL for this parameter.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_krb5_acquire_cred_ccache() routine allows an application to obtain a GSS-API credential for
use with the Kerberos mechanism. The application can then use the credential with the
gss_init_sec_context() and gss_accept_sec_context() routines. The Kerberos credentials cache must
not be closed until the GSS-API credential is no longer needed and has been deleted.

© Copyright IBM Corp. 2000, 2002 237

If GSS_C_INITIATE or GSS_C_BOTH is specified for the credential usage, the application must have a
valid ticket in the credentials cache and the ticket must not expire for at least 10 minutes. The
gss_krb5_acquire_cred_ccache() routine uses the first valid ticket-granting ticket (or the first valid
service ticket if there is no TGT) to create the GSS-API credential.

If GSS_C_ACCEPT or GSS_C_BOTH is specified for the credential usage, the principal associated with
the GSS-API credential must be defined in a key table. The KRB5_KTNAME environment variable is used
to identify the key table used by the Kerberos security mechanism.

If the Kerberos security server is running on the same system as the application, it is not necessary to
have a key table for GSS_C_ACCEPT or GSS_C_BOTH credentials. Instead, GSS-API uses the Kerberos
principal associated with the current system identity to decrypt service tickets. In order to activate this
support, the application must be running with a user or group that has at least READ access to the
IRR.RUSERMAP resource in the FACILITY class, the KRB5_SERVER_KEYTAB environment variable
must be set to 1, and the Kerberos principal associated with the current system identity must match the
principal for the GSS-API credential.

GSS-API - Kerberos mech

238 V1R4.0 Network Authentication Service Programming

Status Codes
Table 74. Status Codes for gss_krb5_acquire_cred_ccache()

Status Code Meaning

GSS_S_BAD_MECH None of the requested mechanisms are supported by the local
system.

GSS_S_COMPLETE The routine completed successfully.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS_S_NO_CRED The Kerberos credentials cache does not contain a valid
ticket-granting ticket.

gss_krb5_ccache_name

Purpose
Sets the default credentials cache name for use by the Kerberos mechanism.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_krb5_ccache_name (

OM_uint32 * minor_status,
char * new_name,
char ** old_name)

Parameters

Input
new_name

Specifies the new name for the default GSS-API Kerberos credentials cache.

Output
old_name

Returns the name of the current default credentials cache or NULL if the default credentials cache has
not been set. Specify NULL for this parameter if you do not need the current credentials cache name.
The returned name should be released by calling krb5_free_string() when it is no longer needed.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_krb5_ccache_name() routine sets the default credentials cache name for use by the Kerberos
mechanism. The default credentials cache is used by gss_acquire_cred() to create a GSS-API credential.
It is also used by gss_init_sec_context() when GSS_C_NO_CREDENTIAL is specified for the GSS-API
credential used to establish the security context.

GSS-API - Kerberos mech

Chapter 6. GSS-API programming interfaces - Kerberos mechanism 239

Status Codes
Table 75. Status Codes for gss_krb5_ccache_name()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

gss_krb5_copy_ccache

Purpose
Copies the tickets from the Kerberos credentials cache associated with a GSS-API credential.

Format
#include <skrb/gssapi.h>
OM_uint32 gss_krb5_copy_ccache (

OM_uint32 * minor_status,
gss_cred_id_t cred_handle,
krb5_ccache ccache)

Parameters

Input
cred_handle

Specifies the GSS-API credential handle. This must be a GSS_C_INITIATE or GSS_C_BOTH
credential.

ccache
Specifies the Kerberos credentials cache.

Output
minor_status

Returns a status code from the security mechanism.

Usage
The gss_krb5_copy_ccache() routine copies the tickets from the Kerberos credentials cache associated
with a GSS-API credential to a credentials cache provided by the caller. The supplied Kerberos credentials
cache must have been initialized by krb5_cc_initialize() before calling gss_krb5_copy_ccache() . The
GSS-API credential must have been created by specifying GSS_C_INITIATE or GSS_C_BOTH.

GSS-API - Kerberos mech

240 V1R4.0 Network Authentication Service Programming

Status Codes
Table 76. Status Codes for gss_krb5_copy_ccache()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS_S_NO_CRED The credential handle does not refer to a valid GSS-API
credential.

gss_krb5_get_ccache

Purpose
Returns the Kerberos credentials cache associated with a GSSAPI credential.

Format
#include <skrb/gssapi.h>

OM_uint32 gss_krb5_get_ccache (
OM_uint32 * minor_status,
gss_cred_id_t cred_handle,
krb5_ccache * ccache)

Parameters

Input
cred_handle

Specifies the handle for the GSSAPI credential.

Output
ccache

Returns the handle for the credentials cache. A NULL value is returned if there is no credentials cache
associated with the GSSAPI credential.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_krb5_get_ccache() routine returns the handle for the credentials cache that is associated with
the GSSAPI credential. The application must not close nor destroy this credentials cache. The returned
handle is no longer valid once the GSSAPI credential has been released.

GSS-API - Kerberos mech

Chapter 6. GSS-API programming interfaces - Kerberos mechanism 241

Status Codes
Table 77. Status Codes for gss_krb5_get_ccache()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS_S_NO_CRED The credential handle does not refer to a valid GSSAPI
credential.

gss_krb5_get_tkt_flags

Purpose
Returns the Kerberos ticket flags from the service ticket.

Format
#include <skrb/gssapi.h>
om_uint32 gss_krb5_get_tkt_flags (

om_uint32 * minor_status,
gss_ctx_id_t context_handle,
krb5_flags * tkt_flags)

Parameters

Input
context_handle

Specifies the handle for the GSSAPI security context.

Output
tkt_flags

Returns the ticket flags from the Kerberos ticket associated with the security context.

minor_status
Returns a status code from the security mechanism.

Usage
The gss_krb5_get_tkt_flags() routine returns the ticket flags from the Kerberos ticket associated with the
security context. Refer to the Kerberos API documentation for a description of the various flags.

Status Codes
Table 78. Status Codes for gss_krb5_get_tkt_flags()

Status Code Meaning

GSS_S_COMPLETE The routine completed successfully.

GSS_S_FAILURE The routine failed for reasons that are not defined at the GSS
level. The minor_status return parameter contains a
mechanism-dependent error code describing the reason for the
failure.

GSS_S_NO_CONTEXT The context handle does not refer to a valid security context.

GSS-API - Kerberos mech

242 V1R4.0 Network Authentication Service Programming

Appendix A. POSIX-based portable character set

The following table presents the POSIX-based portable character set.

Table 79. POSIX-based portable character set

Contents Character

<space>

<exclamation-mark> !

<quotation-mark> ″

<number-sign> #

<dollar-sign> $

<percent-sign> %

<ampersand> &

<apostrophe> ’

<left-parenthesis> (

<right-parenthesis>)

<asterisk> *

<plus-sign> +

<comma> ,

<hyphen> -

<colon> :

<semi-colon> ;

<period> .

<slash> /

<back-slash> \

<less-than> <

<equal-to> =

<greater-than> >

<question-mark> ?

<commercial-at> @

<left-square-bracket> [

<right-square-bracket>]

<left-brace> {

<right-brace> }

<circumflex> ^

<underscore> _

<grave-accent> `

<tilde> ~

<vertical-bar> |

<zero> 0

<one> 1

<two> 2

© Copyright IBM Corp. 2000, 2002 243

Table 79. POSIX-based portable character set (continued)

Contents Character

<three> 3

<four> 4

<five> 5

<six> 6

<seven> 7

<eight> 8

<nine> 9

<A> A

 B

<C> C

<D> D

<E> E

<F> F

<G> G

<H> H

<I> I

<J> J

<K> K

<L> L

<M> M

<N> N

<O> O

<P> P

<Q> Q

<R> R

<S> S

<T> T

<U> U

<V> V

<W> W

<X> X

<Y> Y

<Z> Z

<a> a

 b

<c> c

<d> d

<e> e

<f> f

<g> g

244 V1R4.0 Network Authentication Service Programming

Table 79. POSIX-based portable character set (continued)

Contents Character

<h> h

<i> i

<j> j

<k> k

<l> l

<m> m

<n> n

<o> o

<p> p

<q> q

<r> r

<s> s

<t> t

<u> u

<v> v

<w> w

<x> x

<y> y

<z> z

Appendix A. POSIX-based portable character set 245

246 V1R4.0 Network Authentication Service Programming

Appendix B. Accessibility

Accessibility features help a user who has a physical disability, such as restricted mobility or limited vision,
to use software products successfully. The major accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user interfaces found in z/OS.
Consult the assistive technology documentation for specific information when using it to access z/OS
interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS: TSO/E Primer, SA22-7787,
z/OS: TSO/E User’s Guide, SA22-7794, and z/OS: ISPF User’s Guide Volume I, SC34-4822, for
information about accessing TSO/E and ISPF interfaces. These guides describe how to use TSO/E and
ISPF, including the use of keyboard shortcuts or function keys (PF keys). Each guide includes the default
settings for the PF keys and explains how to modify their functions.

© Copyright IBM Corp. 2000, 2002 247

248 V1R4.0 Network Authentication Service Programming

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 2000, 2002 249

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A.
Attention: Information Request

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been
made on development-level systems and there is no guarantee that these measurements will be the same
on generally available systems. Furthermore, some measurement may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written.

These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these
sample programs in any form without payment to IBM for the purposes of developing, using, marketing, or
distributing application programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

250 V1R4.0 Network Authentication Service Programming

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
IBM Corp. 2000. All rights reserved.

The following copyright and permission notice applies to portions of this information that were obtained
from the Massachusetts Institute of Technology.
/* Copyright 1985,1986,1987,1988,1990 by the Massachusetts Institute */
/* of Technology. */
/* All Rights Reserved. */
/* */
/* Copyright 1987,1995 by the Massachusetts Institute of Technology. */
/* All Rights Reserved. */
/* */
/* Copyright 1994 by the Massachusetts Institute of Technology. */
/* Copyright (c)1994 CyberSAFE Corporation */
/* Copyright (c)1993 Open Computing Security Group */
/* Copyright (c)1990,1991 by the Massachusetts Institute of */
/* Technology. */
/* All Rights Reserved. */
/* */
/* Under U.S. law, this software may not be exported outside the US */
/* without license from the U.S.Commerce department. */
/* */
/* These routines form the library interface to the DES facilities. */
/* */
/* Export of this software from the United States of America may */
/* require a specific license from the United States Government. */
/* It is the responsibility of any person or organization contemplating */
/* export to obtain such a license before exporting. */
/* */
/* WITHIN THAT CONSTRAINT, permission to use, copy, modify, and */
/* distribute this software and its documentation for any purpose and */
/* without fee is hereby granted, provided that the above copyright */
/* notice appear in all copies and that both that copyright notice and */
/* this permission notice appear in supporting documentation, and that */
/* the name of M.I.T. not be used in advertising or publicity pertaining */
/* to distribution of the software without specific, written prior */
/* permission. Neither M.I.T., the Open Computing Security Group, nor */
/* CyberSAFE Corporation make any representations about the suitability of*/
/* this software for any purpose. It is provided “as is” without express */
/* or implied warranty. */
/* */

* Copyright ((c)1990,1993,1994
* The Regents of the University of California. All rights reserved.
* This code is derived from software contributed to Berkeley by
* Margo Seltzer.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS” AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE

Notices 251

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.

/* Copyright (C)1998 by the FundsXpress,INC.
*
* All rights reserved.
*
* Export of this software from the United States of America may require
* a specific license from the United States Government. It is the
* responsibility of any person or organization contemplating export to
* obtain such a license before exporting.
*
* WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
* distribute this software and its documentation for any purpose and
* without fee is hereby granted, provided that the above copyright
* notice appear in all copies and that both that copyright notice and
* this permission notice appear in supporting documentation, and that
* the name of FundsXpress. not be used in advertising or publicity pertaining
* to distribution of the software without specific, written prior
* permission. FundsXpress makes no representations about the suitability of
* this software for any purpose. It is provided “as is” without express
* or implied warranty.
*
* THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/

/*

** Copyright (C)1990, RSA Data Security,Inc.All rights reserved. **
** **
** License to copy and use this software is granted provided that **
** it is identified as the “RSA Data Security, Inc. MD5 Message- **
** Digest Algorithm” in all material mentioning or referencing this **
** software or this function. **
** **
** License is also granted to make and use derivative works **
** provided that such works are identified as “derived from the RSA **
** Data Security, Inc. MD5 Message-Digest Algorithm” in all **
** License is also granted to make and use derivative works **
** material mentioning or referencing the derived work. **
** **
** RSA Data Security, Inc.makes no representations concerning **
** either the merchantability of this software or the suitability **
** of this software for any particular purpose. It is provided “as **
** is” without express or implied warranty of any kind. **
** **
** These notices must be retained in any copies of any part of this **
** documentation and//or software. **

*/

/* Copyright ((c)1994 CyberSAFE Corporation */
/* All rights reserved. */
/* Copyright 1990,1991 by the Massachusetts Institute of Technology. */
/* All Rights Reserved. */
/* Export of this software from the United States of America may */
/* require a specific license from the United States Government. */
/* It is the responsibility of any person or organization */
/* contemplating export to obtain such a license before exporting. */
/* */
/* WITHIN THAT CONSTRAINT, permission to use, copy, modify, and */
/* distribute this software and its documentation for any purpose and*/

252 V1R4.0 Network Authentication Service Programming

/* without fee is hereby granted, provided that the above copyright */
/* notice appear in all copies and that both that copyright notice */
/* and this permission notice appear in supporting documentation, and*/
/* that the name of M.I.T. not be used in advertising or publicity */
/* pertaining to distribution of the software without specific, */
/* written prior permission. Neither M.I.T., the Open Computing */
/* Security Group, nor CyberSAFE Corporation make any representations*/
/* about the suitability of this software for any purpose. It is */
/* provided “as is” without express or implied warranty. */

/*
* Copyright 1990,1991 by the Massachusetts Institute of Technology.
* Copyright 1996 by Lehman Brothers, Inc.
* All Rights Reserved.
*
* Export of this software from the United States of America may
* require a specific license from the United States Government.
* It is the responsibility of any person or organization contemplating
* export to obtain such a license before exporting.
*
* WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
* distribute this software and its documentation for any purpose and
* without fee is hereby granted, provided that the above copyright
* notice appear in all copies and that both that copyright notice and
* this permission notice appear in supporting documentation, and that
* the name of M.I.T.or Lehman Brothers not be used in advertising or
* publicity pertaining to distribution of the software without
* specific, written prior permission M.I.T.and Lehman Brothers
* make no representations about the suitability of this software for
* any purpose. It is provided “as is” without express or implied
* warranty.
*/

/* Copyright 1995 by Richard P. Basch. All Rights Reserved. */
/* Copyright 1995 by Lehman Brothers, Inc. All Rights Reserved. */
/* */
/* Export of this software from the United States of America may */
/* require a specific license from the United States Government. */
/* It is the responsibility of any person or organization contemplating */
/* export to obtain such a license before exporting. */
/* */
/* WITHIN THAT CONSTRAINT, permission to use, copy, modify, and */
/* distribute this software and its documentation for any purpose and */
/* without fee is hereby granted, provided that the above copyright */
/* notice appear in all copies and that both that copyright notice and */
/* this permission notice appear in supporting documentation, and that */
/* the name of Richard P. Basch, Lehman Brothers and M.I.T.not be used */
/* in advertising or publicity pertaining to distribution of the software */
/* without specific, written prior permission. Richard P. Basch, */
/* Lehman Brothers and M.I.T. make no representations about the suitability*/
/* of this software for any purpose. It is provided “as is” without */
/* express or implied warranty. */

Clearly Differentiated Programming Interfaces (CDPI)
This publication documents intended Programming Interfaces that allow the customer to write programs to
obtain services of z/OS Security Server Network Authentication Service.

Trademarks
The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

v BookManager

v IBM

v IBMLink

Notices 253

v Library Reader

v RACF

v Resource Link

v z/OS

v z/OS.e

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

254 V1R4.0 Network Authentication Service Programming

Bibliography

This is the same bibliography that appears in z/OS: Security Server Network Authentication Service
Administration. Not every document listed here is cited in both publications.

z/OS documents for Network
Authentication Service
v z/OS: Security Server Network Authentication

Service Administration, SC24-5926

v z/OS: Security Server Network Authentication
Service Programming, SC24-5927

Other Security Server
publications

Lightweight Directory Access
Protocol (LDAP)
v z/OS: Security Server LDAP Server

Administration and Use, SC24-5923

v z/OS: Security Server LDAP Client
Programming, SC24-5924

Resource Access Control Facility
(RACF®)
v z/OS: Security Server RACF Macros and

Interfaces, SA22-7682

v z/OS: Security Server RACF Callable Services,
SA22-7691

v z/OS: Security Server RACF Command
Language Reference, SA22-7687

v z/OS: Security Server RACROUTE Macro
Reference, SA22-7692

MVS programming documents
v z/OS: MVS Programming: Authorized

Assembler Services, Volume 1
(ALESERV-DYNALLO), SA22-7609

v z/OS: MVS Programming: Authorized
Assembler Services, Volume 2
(ENFREQ-IXGWRITE), SA22-7610

v z/OS: MVS Programming: Authorized
Assembler Services, Volume 3
(LLACOPY-SDUMPX), SA22-7611

v z/OS: MVS Programming: Authorized
Assembler Services, Volume 4
(SETFRR-WTOR), SA22-7612

v z/OS: MVS Programming: Sysplex Services
Guide, SA22-7617

v z/OS: MVS Programming: Sysplex Services
Reference, SA22-7618

Other documents
v z/OS: System Secure Sockets Layer

Programming, SC24-5901

v z/OS: C/C++ Run-Time Library Reference,
SA22-7821

© Copyright IBM Corp. 2000, 2002 255

256 V1R4.0 Network Authentication Service Programming

Index

A
accessibility 247
address

determining if in address list 7
returning 9

addresses
generating 8

anonymity 177
APIs 7

administration 141
GSS-API 187
GSS-API - Kerberos mechanism 237

authentication context
releasing 8

B
bibliography 255

C
cache, credentials 5
cache, replay 5
character set, POSIX-based 243
comparing

Kerberos addresses 7
confidentiality

of messages 176
conventions used in this book xvii
credentials cache 5

D
data types 180
disability 247

E
error handling 178

F
files, using Kerberos 4

G
generating

local and remote network addresses 8
Generic Security Service Application Programming

Interface (GSS-API) 175
gss_accept_sec_context 187
gss_acquire_cred 190
gss_add_cred 192
gss_add_oid_set_member 194
gss_canonicalize_name 195
gss_compare_name 196

gss_context_time 197
gss_create_empty_oid_set 198
gss_delete_sec_context 199
gss_display_name 200
gss_display_status 201
gss_duplicate_name 202, 203, 204, 205, 208, 210
gss_get_mic 206
gss_import_name 208
gss_indicate_mechs 211
gss_init_sec_context 212
gss_inquire_context 216
gss_inquire_cred 217
gss_inquire_cred_by_mech 219
gss_inquire_mechs_for_name 220
gss_inquire_names_for_mech 221
gss_krb5_acquire_cred_ccache 237
gss_krb5_ccache_name 239
gss_krb5_copy_ccache 240
gss_krb5_get_ccache 241
gss_krb5_get_tkt_flags 242
gss_oid_to_str 222
gss_process_context_token 223
gss_release_buffer 224
gss_release_cred 224
gss_release_name 225
gss_release_oid 226
gss_release_oid_set 227
gss_str_to_oid 227
gss_test_oid_set_member 228
gss_unwrap 229
gss_verify_mic 230
gss_wrap 232
gss_wrap_size_limit 234
GSS-API

data types 180
error handling 178
interoperability with Windows 2000 SSI 184
introduction 175
major status values 178
minor status values 180
services 176
version compatability 184

GSS-API programming interfaces 187
gss_accept_sec_context 187
gss_acquire_cred 190
gss_add_cred 192
gss_add_oid_set_member 194
gss_canonicalize_name 195
gss_compare_name 196
gss_context_time 197
gss_create_empty_oid_set 198
gss_delete_sec_context 199
gss_display_name 200
gss_display_status 201
gss_duplicate_name 202, 203, 204, 205, 208, 210
gss_get_mic 206
gss_import_name 208
gss_indicate_mechs 211

© Copyright IBM Corp. 2000, 2002 257

GSS-API programming interfaces (continued)
gss_init_sec_context 212
gss_inquire_context 216
gss_inquire_cred 217
gss_inquire_cred_by_mech 219
gss_inquire_mechs_for_name 220
gss_inquire_names_for_mech 221
gss_oid_to_str 222
gss_process_context_token 223
gss_release_buffer 224
gss_release_cred 224
gss_release_name 225
gss_release_oid 226
gss_release_oid_set 227
gss_str_to_oid 227
gss_test_oid_set_member 228
gss_unwrap 229
gss_verify_mic 230
gss_wrap 232
gss_wrap_size_limit 234
Kerberos mechanism 237

GSS-API programming interfaces - Kerberos
mechanism

gss_krb5_acquire_cred_ccache 237
gss_krb5_ccache_name 239
gss_krb5_copy_ccache 240
gss_krb5_get_ccache 241
gss_krb5_get_tkt_flags 242

I
integrity

of messages 176
internet sources xv
interoperability with Windows 2000 SSPI in

GSS-API 184
introduction to Kerberos 3

K
kadm5_chpass_principal 141
kadm5_chpass_principal_3 142
kadm5_create_policy 143
kadm5_create_principal 144
kadm5_create_principal_3 145
kadm5_delete_policy 147
kadm5_delete_principal 148
kadm5_destroy 148
kadm5_free_key_list 149
kadm5_free_name_list 150
kadm5_free_policy_ent 150
kadm5_free_principal_ent 151
kadm5_get_policies 151
kadm5_get_policy 152
kadm5_get_principal 153
kadm5_get_principals 155
kadm5_get_privs 156
kadm5_init_with_creds 157
kadm5_init_with_password 159
kadm5_init_with_skey 161
kadm5_modify_policy 163

kadm5_modify_principal 164
kadm5_randkey_principal 165
kadm5_randkey_principal_3 166
kadm5_rename_principal 167
kadm5_setkey_principal 168
kadm5_setkey_principal_3 169
Kerberos

comparing addresses 7
Kerberos administration programming interfaces 141

kadm5_chpass_principal 141
kadm5_chpass_principal_3 142
kadm5_create_policy 143
kadm5_create_principal 144
kadm5_create_principal_3 145
kadm5_delete_policy 147
kadm5_delete_principal 148
kadm5_destroy 148
kadm5_free_key_list 149
kadm5_free_name_list 150
kadm5_free_policy_ent 150
kadm5_free_principal_ent 151
kadm5_get_policies 151
kadm5_get_policy 152
kadm5_get_principal 153
kadm5_get_principals 155
kadm5_get_privs 156
kadm5_init_with_creds 157
kadm5_init_with_password 159
kadm5_init_with_skey 161
kadm5_modify_policy 163
kadm5_modify_principal 164
kadm5_randkey_principal 165
kadm5_randkey_principal_3 166
kadm5_rename_principal 167
kadm5_setkey_principal 168
kadm5_setkey_principal_3 169

Kerberos basics 3
Kerberos limitations 4
Kerberos programming interfaces 7

krb5_address_compare 7
krb5_address_search 7
krb5_auth_con_free 8
krb5_auth_con_genaddrs 8
krb5_auth_con_getaddrs 9
krb5_auth_con_getauthenticator 10
krb5_auth_con_getflags 11
krb5_auth_con_getivector 11
krb5_auth_con_getkey 12
krb5_auth_con_getlocalseqnumber 13
krb5_auth_con_getlocalsubkey 13
krb5_auth_con_getports 14
krb5_auth_con_getrcache 15
krb5_auth_con_getremoteseqnumber 15
krb5_auth_con_getremotesubkey 16
krb5_auth_con_init 16
krb5_auth_con_initivector 17
krb5_auth_con_set_req_cksumtype 18
krb5_auth_con_set_safe_cksumtype 19
krb5_auth_con_setaddrs 19
krb5_auth_con_setflags 20
krb5_auth_con_setivector 21

258 V1R4.0 Network Authentication Service Programming

Kerberos programming interfaces (continued)
krb5_auth_con_setports 21
krb5_auth_con_setrcache 22
krb5_auth_con_setuseruserkey 23
krb5_auth_to_rep 23
krb5_build_principal 24
krb5_build_principal_ext 25
krb5_build_principal_ext_va 26
krb5_build_principal_va 27
krb5_c_block_size 28
krb5_cc_close 37
krb5_cc_default 38
krb5_cc_default_name 38
krb5_cc_destroy 39
krb5_cc_end_seq_get 40
krb5_cc_generate_new 40
krb5_cc_get_name 41
krb5_cc_get_principal 41
krb5_cc_get_type 42
krb5_cc_initialize 42
krb5_cc_next_cred 43
krb5_cc_register 44
krb5_cc_remove_cred 44
krb5_cc_resolve 46
krb5_cc_retrieve_cred 46
krb5_cc_set_flags 48
krb5_cc_start_seq_get 49
krb5_cc_store_cred 50
krb5_change_password 50
krb5_copy_address 51
krb5_copy_addresses 52
krb5_copy_authdata 52
krb5_copy_authenticator 53
krb5_copy_checksum 54
krb5_copy_creds 54
krb5_copy_data 55
krb5_copy_keyblock 56
krb5_copy_keyblock_contents 56
krb5_copy_principal 57
krb5_copy_ticket 57, 58, 59, 63, 66, 67
krb5_free_address 59
krb5_free_addresses 60
krb5_free_ap_rep_enc_part 60
krb5_free_authdata 61
krb5_free_authenticator 61
krb5_free_authenticator_contents 62
krb5_free_checksum 62
krb5_free_context 64
krb5_free_cred_contents 64
krb5_free_creds 65
krb5_free_data 65
krb5_free_enc_tkt_part 66
krb5_free_error 67
krb5_free_host_realm 68
krb5_free_kdc_rep 68
krb5_free_keyblock 69
krb5_free_keyblock_contents 69
krb5_free_krbhst 70
krb5_free_principal 70
krb5_free_string 71
krb5_free_tgt_creds 71

Kerberos programming interfaces (continued)
krb5_free_ticket 71
krb5_free_tickets 72
krb5_gen_replay_name 72
krb5_generate_seq_number 73
krb5_generate_subkey 74
krb5_get_cred_from_kdc 74
krb5_get_cred_from_kdc_renew 75
krb5_get_cred_from_kdc_validate 76
krb5_get_cred_via_tkt 77
krb5_get_credentials 78
krb5_get_credentials_renew 79
krb5_get_credentials_validate 80
krb5_get_default_in_tkt_ktypes 81
krb5_get_default_realm 82
krb5_get_default_tgs_ktypes 82
krb5_get_host_realm 83
krb5_get_in_tkt_system 84
krb5_get_in_tkt_with_keytab 85
krb5_get_in_tkt_with_password 87
krb5_get_in_tkt_with_skey 89
krb5_get_krbhst 91
krb5_get_server_rcache 92
krb5_init_context 92
krb5_kt_add_entry 93
krb5_kt_close 93
krb5_kt_default 94
krb5_kt_default_name 95
krb5_kt_end_seq_get 95
krb5_kt_free_entry 96
krb5_kt_get_entry 96
krb5_kt_get_name 97
krb5_kt_get_type 98
krb5_kt_next_entry 98
krb5_kt_read_service_key 99
krb5_kt_register 100
krb5_kt_remove_entry 100
krb5_kt_resolve 101
krb5_kt_start_seq_get 102
krb5_md4_crypto_compat_ctl 102
krb5_md5_crypto_compat_ctl 103
krb5_mk_error 104
krb5_mk_priv 104
krb5_mk_rep 105
krb5_mk_req 106
krb5_mk_req_extended 107
krb5_mk_safe 108
krb5_os_hostaddr 110
krb5_os_localaddr 110
krb5_parse_name 111
krb5_principal_compare 111
krb5_random_confounder 112
krb5_rc_close 113
krb5_rc_default 113
krb5_rc_default_name 114, 125
krb5_rc_destroy 114
krb5_rc_expunge 115
krb5_rc_free_entry_contents 115
krb5_rc_get_lifespan 116
krb5_rc_get_name 116
krb5_rc_get_type 117

Index 259

Kerberos programming interfaces (continued)
krb5_rc_initialize 117
krb5_rc_recover 118
krb5_rc_register_type 118
krb5_rc_resolve 119
krb5_rc_store 120
krb5_rd_error 120
krb5_rd_priv 121
krb5_rd_rep 122
krb5_rd_req 123
krb5_rd_safe 126, 127
krb5_realm_compare 128
krb5_recvauth 129
krb5_sendauth 130
krb5_set_config_files 132
krb5_set_default_in_tkt_ktypes 133
krb5_set_default_realm 134
krb5_set_default_tgs_ktypes 134
krb5_sname_to_principal 135
krb5_svc_get_msg 136
krb5_timeofday 136
krb5_unparse_name 137
krb5_unparse_name_ext 138
krb5_us_timeofday 138

key table 5
keyboard 247
krb5_address_compare 7
krb5_address_search 7
krb5_auth_con_free 8
krb5_auth_con_genaddrs 8
krb5_auth_con_getaddrs 9
krb5_auth_con_getauthenticator 10
krb5_auth_con_getflags 11
krb5_auth_con_getivector 11
krb5_auth_con_getkey 12
krb5_auth_con_getlocalseqnumber 13
krb5_auth_con_getlocalsubkey 13
krb5_auth_con_getports 14
krb5_auth_con_getrcache 15
krb5_auth_con_getremoteseqnumber 15
krb5_auth_con_getremotesubkey 16
krb5_auth_con_init 16
krb5_auth_con_initivector 17
krb5_auth_con_set_req_cksumtype 18
krb5_auth_con_set_safe_cksumtype 19
krb5_auth_con_setaddrs 19
krb5_auth_con_setflags 20
krb5_auth_con_setivector 21
krb5_auth_con_setports 21
krb5_auth_con_setrcache 22
krb5_auth_con_setuseruserkey 23
krb5_auth_to_rep 23
krb5_build_principal 24
krb5_build_principal_ext 25
krb5_build_principal_ext_va 26
krb5_build_principal_va 27
krb5_c_block_size 28
krb5_cc_close 37
krb5_cc_default 38
krb5_cc_default_name 38
krb5_cc_destroy 39

krb5_cc_end_seq_get 40
krb5_cc_generate_new 40
krb5_cc_get_name 41
krb5_cc_get_principal 41
krb5_cc_get_type 42
krb5_cc_initialize 42
krb5_cc_next_cred 43
krb5_cc_register 44
krb5_cc_remove_cred 44
krb5_cc_resolve 46
krb5_cc_retrieve_cred 46
krb5_cc_set_flags 48
krb5_cc_start_seq_get 49
krb5_cc_store_cred 50
krb5_change_password 50
krb5_copy_address 51
krb5_copy_addresses 52
krb5_copy_authdata 52
krb5_copy_authenticator 53
krb5_copy_checksum 54
krb5_copy_creds 54
krb5_copy_data 55
krb5_copy_keyblock 56
krb5_copy_keyblock_contents 56
krb5_copy_principal 57
krb5_copy_ticket 57, 58, 59, 63, 66, 67
krb5_free_address 59
krb5_free_addresses 60
krb5_free_ap_rep_enc_part 60
krb5_free_authdata 61
krb5_free_authenticator 61
krb5_free_authenticator_contents 62
krb5_free_checksum 62
krb5_free_context 64
krb5_free_cred_contents 64
krb5_free_creds 65
krb5_free_data 65
krb5_free_enc_tkt_part 66
krb5_free_error 67
krb5_free_host_realm 68
krb5_free_kdc_rep 68
krb5_free_keyblock 69
krb5_free_keyblock_contents 69
krb5_free_krbhst 70
krb5_free_principal 70
krb5_free_string 71
krb5_free_tgt_creds 71
krb5_free_ticket 71
krb5_free_tickets 72
krb5_gen_replay_name 72
krb5_generate_seq_number 73
krb5_generate_subkey 74
krb5_get_cred_from_kdc 74
krb5_get_cred_from_kdc_renew 75
krb5_get_cred_from_kdc_validate 76
krb5_get_cred_via_tkt 77
krb5_get_credentials 78
krb5_get_credentials_renew 79
krb5_get_credentials_validate 80
krb5_get_default_in_tkt_ktypes 81
krb5_get_default_realm 82

260 V1R4.0 Network Authentication Service Programming

krb5_get_default_tgs_ktypes 82
krb5_get_host_realm 83
krb5_get_in_tkt_system 84
krb5_get_in_tkt_with_keytab 85
krb5_get_in_tkt_with_password 87
krb5_get_in_tkt_with_skey 89
krb5_get_krbhst 91
krb5_get_server_rcache 92
krb5_init_context 92
krb5_kt_add_entry 93
krb5_kt_close 93
krb5_kt_default 94
krb5_kt_default_name 95
krb5_kt_end_seq_get 95
krb5_kt_free_entry 96
krb5_kt_get_entry 96
krb5_kt_get_name 97
krb5_kt_get_type 98
krb5_kt_next_entry 98
krb5_kt_read_service_key 99
krb5_kt_register 100
krb5_kt_remove_entry 100
krb5_kt_resolve 101
krb5_kt_start_seq_get 102
krb5_md4_crypto_compat_ctl 102
krb5_md5_crypto_compat_ctl 103
krb5_mk_error 104
krb5_mk_priv 104
krb5_mk_rep 105
krb5_mk_req 106
krb5_mk_req_extended 107
krb5_mk_safe 108
krb5_os_hostaddr 110
krb5_os_localaddr 110
krb5_parse_name 111
krb5_principal_compare 111
krb5_random_confounder 112
krb5_rc_close 113
krb5_rc_default 113
krb5_rc_default_name 114, 125
krb5_rc_destroy 114
krb5_rc_expunge 115
krb5_rc_free_entry_contents 115
krb5_rc_get_lifespan 116
krb5_rc_get_name 116
krb5_rc_get_type 117
krb5_rc_initialize 117
krb5_rc_recover 118
krb5_rc_register_type 118
krb5_rc_resolve 119
krb5_rc_store 120
krb5_rd_error 120
krb5_rd_priv 121
krb5_rd_rep 122
krb5_rd_req 123
krb5_rd_safe 126, 127
krb5_realm_compare 128
krb5_recvauth 129
krb5_sendauth 130
krb5_set_config_files 132
krb5_set_default_in_tkt_ktypes 133

krb5_set_default_realm 134
krb5_set_default_tgs_ktypes 134
krb5_sname_to_principal 135
krb5_svc_get_msg 136
krb5_timeofday 136
krb5_unparse_name 137
krb5_unparse_name_ext 138
krb5_us_timeofday 138

L
limitations of Kerberos 4
local address

generating 8
returning 9

M
message confidentiality 176
message integrity 176
message replay 176
message sequencing 176

N
network addresses

generating 8
notices 249

P
POSIX-based portable character set 243
programming interfaces

GSS-API 187
GSS-API - Kerberos mechanism 237
Kerberos 7

protection quality 177
purpose of realms 4

Q
quality of protection 177

R
realms, purpose of 4
releasing

authentication context 8
remote network address

returning 9
remote network addresses

generating 8
replay cache 5
replay of messages 176

S
sequencing of messages 176
services, GSS-API 176
services, using Kerberos 6

Index 261

shortcut keys 247
softcopy publications xv
status values, major 178
status values, minor 180

T
table, key 5
trademarks 253

U
using Kerberos files 4
using Kerberos services 6

V
version compatability in GSS-API 184

W
where to find more information xv
who should use this book xv

262 V1R4.0 Network Authentication Service Programming

Readers’ Comments — We’d Like to Hear from You

z/OS
Security Server
Network Authentication Service
Programming

Publication No. SC24-5927-02

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC24-5927-02

SC24-5927-02

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY

12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5694-A01, 5655-G52

Printed in U.S.A.

SC24-5927-02

	Contents
	Tables
	Figures
	About this document
	Who should use this document
	How this document is organized
	Where to find more information
	Softcopy publications
	Internet sources
	Using LookAt to look up message explanations
	Accessing licensed documents on the Internet

	Conventions used in this document
	Sending your comments

	Summary of Changes
	Part 1. Kerberos interfaces
	Chapter 1. Introduction to Kerberos
	Kerberos basics
	The purpose of realms
	Assumptions about the environment

	Using Kerberos files
	Credentials cache
	Replay cache
	Key table

	Using Kerberos services

	Chapter 2. Kerberos programming interfaces
	krb5_address_compare
	krb5_address_search
	krb5_auth_con_free
	krb5_auth_con_genaddrs
	krb5_auth_con_getaddrs
	krb5_auth_con_getauthenticator
	krb5_auth_con_getflags
	krb5_auth_con_getivector
	krb5_auth_con_getkey
	krb5_auth_con_getlocalseqnumber
	krb5_auth_con_getlocalsubkey
	krb5_auth_con_getports
	krb5_auth_con_getrcache
	krb5_auth_con_getremoteseqnumber
	krb5_auth_con_getremotesubkey
	krb5_auth_con_init
	krb5_auth_con_initivector
	krb5_auth_con_set_req_cksumtype
	krb5_auth_con_set_safe_cksumtype
	krb5_auth_con_setaddrs
	krb5_auth_con_setflags
	krb5_auth_con_setivector
	krb5_auth_con_setports
	krb5_auth_con_setrcache
	krb5_auth_con_setuseruserkey
	krb5_auth_to_rep
	krb5_build_principal
	krb5_build_principal_ext
	krb5_build_principal_ext_va
	krb5_build_principal_va
	krb5_c_block_size
	krb5_c_checksum_length
	krb5_c_decrypt
	krb5_c_encrypt
	krb5_c_encrypt_length
	krb5_c_enctype_compare
	krb5_c_keyed_checksum_types
	krb5_c_make_checksum
	krb5_c_make_random_key
	krb5_c_random_make_octets
	krb5_c_random_seed
	krb5_c_string_to_key
	krb5_c_verify_checksum
	krb5_cc_close
	krb5_cc_default
	krb5_cc_default_name
	krb5_cc_destroy
	krb5_cc_end_seq_get
	krb5_cc_generate_new
	krb5_cc_get_name
	krb5_cc_get_principal
	krb5_cc_get_type
	krb5_cc_initialize
	krb5_cc_next_cred
	krb5_cc_register
	krb5_cc_remove_cred
	krb5_cc_resolve
	krb5_cc_retrieve_cred
	krb5_cc_set_default_name
	krb5_cc_set_flags
	krb5_cc_start_seq_get
	krb5_cc_store_cred
	krb5_change_password
	krb5_copy_address
	krb5_copy_addresses
	krb5_copy_authdata
	krb5_copy_authenticator
	krb5_copy_checksum
	krb5_copy_creds
	krb5_copy_data
	krb5_copy_keyblock
	krb5_copy_keyblock_contents
	krb5_copy_principal
	krb5_copy_ticket
	krb5_dll_load
	krb5_dll_unload
	krb5_free_address
	krb5_free_addresses
	krb5_free_ap_rep_enc_part
	krb5_free_authdata
	krb5_free_authenticator
	krb5_free_authenticator_contents
	krb5_free_checksum
	krb5_free_checksum_contents
	krb5_free_cksumtypes
	krb5_free_context
	krb5_free_cred_contents
	krb5_free_creds
	krb5_free_data
	krb5_free_data_contents
	krb5_free_enc_tkt_part
	krb5_free_enctypes
	krb5_free_error
	krb5_free_host_realm
	krb5_free_kdc_rep
	krb5_free_keyblock
	krb5_free_keyblock_contents
	krb5_free_krbhst
	krb5_free_principal
	krb5_free_string
	krb5_free_tgt_creds
	krb5_free_ticket
	krb5_free_tickets
	krb5_gen_replay_name
	krb5_generate_seq_number
	krb5_generate_subkey
	krb5_get_cred_from_kdc
	krb5_get_cred_from_kdc_renew
	krb5_get_cred_from_kdc_validate
	krb5_get_cred_via_tkt
	krb5_get_credentials
	krb5_get_credentials_renew
	krb5_get_credentials_validate
	krb5_get_default_in_tkt_ktypes
	krb5_get_default_realm
	krb5_get_default_tgs_ktypes
	krb5_get_host_realm
	krb5_get_in_tkt_system
	krb5_get_in_tkt_with_keytab
	krb5_get_in_tkt_with_password
	krb5_get_in_tkt_with_skey
	krb5_get_krbhst
	krb5_get_server_rcache
	krb5_init_context
	krb5_kt_add_entry
	krb5_kt_close
	krb5_kt_default
	krb5_kt_default_name
	krb5_kt_end_seq_get
	krb5_kt_free_entry
	krb5_kt_get_entry
	krb5_kt_get_name
	krb5_kt_get_type
	krb5_kt_next_entry
	krb5_kt_read_service_key
	krb5_kt_register
	krb5_kt_remove_entry
	krb5_kt_resolve
	krb5_kt_start_seq_get
	krb5_md4_crypto_compat_ctl
	krb5_md5_crypto_compat_ctl
	krb5_mk_error
	krb5_mk_priv
	krb5_mk_rep
	krb5_mk_req
	krb5_mk_req_extended
	krb5_mk_safe
	krb5_os_hostaddr
	krb5_os_localaddr
	krb5_parse_name
	krb5_principal_compare
	krb5_random_confounder
	krb5_rc_close
	krb5_rc_default
	krb5_rc_default_name
	krb5_rc_destroy
	krb5_rc_expunge
	krb5_rc_free_entry_contents
	krb5_rc_get_lifespan
	krb5_rc_get_name
	krb5_rc_get_type
	krb5_rc_initialize
	krb5_rc_recover
	krb5_rc_register_type
	krb5_rc_resolve
	krb5_rc_store
	krb5_rd_error
	krb5_rd_priv
	krb5_rd_rep
	krb5_rd_req
	krb5_rd_req_verify
	krb5_rd_safe
	krb5_read_password
	krb5_realm_compare
	krb5_recvauth
	krb5_sendauth
	krb5_set_config_files
	krb5_set_default_in_tkt_ktypes
	krb5_set_default_realm
	krb5_set_default_tgs_ktypes
	krb5_sname_to_principal
	krb5_svc_get_msg
	krb5_timeofday
	krb5_unparse_name
	krb5_unparse_name_ext
	krb5_us_timeofday

	Chapter 3. Kerberos administration programming interfaces
	kadm5_chpass_principal
	kadm5_chpass_principal_3
	kadm5_create_policy
	kadm5_create_principal
	kadm5_create_principal_3
	kadm5_delete_policy
	kadm5_delete_principal
	kadm5_destroy
	kadm5_free_key_list
	kadm5_free_name_list
	kadm5_free_policy_ent
	kadm5_free_principal_ent
	kadm5_get_policies
	kadm5_get_policy
	kadm5_get_principal
	kadm5_get_principals
	kadm5_get_privs
	kadm5_init_with_creds
	kadm5_init_with_password
	kadm5_init_with_skey
	kadm5_modify_policy
	kadm5_modify_principal
	kadm5_randkey_principal
	kadm5_randkey_principal_3
	kadm5_rename_principal
	kadm5_setkey_principal
	kadm5_setkey_principal_3

	Part 2. GSS-API interfaces
	Chapter 4. Introduction to GSS-API
	General information about GSS-API
	GSS-API services
	Message integrity and confidentiality
	Message replay and sequencing
	Quality of protection
	Anonymity

	Error handling
	Major status values
	Minor status values

	Data types
	Integer
	String
	Object identifier
	Object identifier sets
	Credentials
	Contexts
	Tokens
	Names
	Channel bindings
	Optional parameters

	GSS-API version compatibility
	Interoperability with Microsoft Windows 2000 SSPI
	Creating the security context
	Accepting the security context
	Message signature
	Message encryption
	Message sequence numbers

	Chapter 5. GSS-API programming interfaces
	gss_accept_sec_context
	gss_acquire_cred
	gss_add_cred
	gss_add_oid_set_member
	gss_canonicalize_name
	gss_compare_name
	gss_context_time
	gss_create_empty_oid_set
	gss_delete_sec_context
	gss_display_name
	gss_display_status
	gss_duplicate_name
	gss_export_cred
	gss_export_name
	gss_export_sec_context
	gss_get_mic
	gss_import_cred
	gss_import_name
	gss_import_sec_context
	gss_indicate_mechs
	gss_init_sec_context
	gss_inquire_context
	gss_inquire_cred
	gss_inquire_cred_by_mech
	gss_inquire_mechs_for_name
	gss_inquire_names_for_mech
	gss_oid_to_str
	gss_process_context_token
	gss_release_buffer
	gss_release_cred
	gss_release_name
	gss_release_oid
	gss_release_oid_set
	gss_str_to_oid
	gss_test_oid_set_member
	gss_unwrap
	gss_wrap
	gss_wrap_size_limit

	Chapter 6. GSS-API programming interfaces - Kerberos mechanism
	gss_krb5_acquire_cred_ccache
	gss_krb5_ccache_name
	gss_krb5_copy_ccache
	gss_krb5_get_ccache
	gss_krb5_get_tkt_flags

	Appendix A. POSIX-based portable character set
	Appendix B. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Clearly Differentiated Programming Interfaces (CDPI)
	Trademarks

	Bibliography
	z/OS documents for Network Authentication Service
	Other Security Server publications
	Lightweight Directory Access Protocol (LDAP)
	Resource Access Control Facility (RACF®)

	MVS programming documents
	Other documents

	Index
	Readers’ Comments — We'd Like to Hear from You

